Axonal Tree Morphology and Signal Propagation Dynamics Improve Interneuron Classification
Neurons are diverse and can be differentiated by their morphological, electrophysiological, and molecular properties. Current morphology-based classification approaches largely rely on the dendritic tree structure or on the overall axonal projection layout. Here, we use data from public databases of...
Gespeichert in:
Veröffentlicht in: | Neuroinformatics (Totowa, N.J.) N.J.), 2020-10, Vol.18 (4), p.581-590 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 590 |
---|---|
container_issue | 4 |
container_start_page | 581 |
container_title | Neuroinformatics (Totowa, N.J.) |
container_volume | 18 |
creator | Ofer, Netanel Shefi, Orit Yaari, Gur |
description | Neurons are diverse and can be differentiated by their morphological, electrophysiological, and molecular properties. Current morphology-based classification approaches largely rely on the dendritic tree structure or on the overall axonal projection layout. Here, we use data from public databases of neuronal reconstructions and membrane properties to study the characteristics of the axonal and dendritic trees for interneuron classification. We show that combining signal propagation patterns observed by biophysical simulations of the activity along ramified axonal trees with morphological parameters of the axonal and dendritic trees, significantly improve classification results compared to previous approaches. The classification schemes introduced here can be utilized for robust neuronal classification. Our work paves the way for understanding and utilizing form-function principles in realistic neuronal reconstructions. |
doi_str_mv | 10.1007/s12021-020-09466-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2396302654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2396302654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-c9975ed2f9efc9ff62c9a83e0b1c82ff0bc85718a1bef93e9b52713aca585b3a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyxQlmwCfsSJvazKq1IRSJQFK8txxyVVEhc7QfTvcVtgyWos3TNX44PQOcFXBOPiOhCKKUkxxSmWWZ6n4gANCecyxVjIw-2byZQWkgzQSQgrjGleYHyMBoyyLBdZMURv4y_X6jqZe4Dk0fn1u6vdcpPodpG8VMtt9OzdWi91V7k2udm0uqlMSKbN2rtPSKZtB76F3sdwUusQKluZHXuKjqyuA5z9zBF6vbudTx7S2dP9dDKepSbjRZcaKQsOC2olWCOtzamRWjDAJTGCWotLI3hBhCYlWMlAlpwWhGmjueAl02yELve98aCPHkKnmioYqGvdguuDokzmLP6cZxGle9R4F4IHq9a-arTfKILVVqnaK1VRqdopVSIuXfz092UDi7-VX4cRYHsgxKhdglcr1_toLvxX-w3L74NH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396302654</pqid></control><display><type>article</type><title>Axonal Tree Morphology and Signal Propagation Dynamics Improve Interneuron Classification</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ofer, Netanel ; Shefi, Orit ; Yaari, Gur</creator><creatorcontrib>Ofer, Netanel ; Shefi, Orit ; Yaari, Gur</creatorcontrib><description>Neurons are diverse and can be differentiated by their morphological, electrophysiological, and molecular properties. Current morphology-based classification approaches largely rely on the dendritic tree structure or on the overall axonal projection layout. Here, we use data from public databases of neuronal reconstructions and membrane properties to study the characteristics of the axonal and dendritic trees for interneuron classification. We show that combining signal propagation patterns observed by biophysical simulations of the activity along ramified axonal trees with morphological parameters of the axonal and dendritic trees, significantly improve classification results compared to previous approaches. The classification schemes introduced here can be utilized for robust neuronal classification. Our work paves the way for understanding and utilizing form-function principles in realistic neuronal reconstructions.</description><identifier>ISSN: 1539-2791</identifier><identifier>EISSN: 1559-0089</identifier><identifier>DOI: 10.1007/s12021-020-09466-8</identifier><identifier>PMID: 32346847</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Axons - physiology ; Axons - ultrastructure ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Brain - cytology ; Brain - physiology ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; Electrophysiological Phenomena ; Humans ; Imaging, Three-Dimensional - methods ; Interneurons - cytology ; Interneurons - physiology ; Neurology ; Neurosciences ; Original Article</subject><ispartof>Neuroinformatics (Totowa, N.J.), 2020-10, Vol.18 (4), p.581-590</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-c9975ed2f9efc9ff62c9a83e0b1c82ff0bc85718a1bef93e9b52713aca585b3a3</citedby><cites>FETCH-LOGICAL-c457t-c9975ed2f9efc9ff62c9a83e0b1c82ff0bc85718a1bef93e9b52713aca585b3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12021-020-09466-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12021-020-09466-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32346847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ofer, Netanel</creatorcontrib><creatorcontrib>Shefi, Orit</creatorcontrib><creatorcontrib>Yaari, Gur</creatorcontrib><title>Axonal Tree Morphology and Signal Propagation Dynamics Improve Interneuron Classification</title><title>Neuroinformatics (Totowa, N.J.)</title><addtitle>Neuroinform</addtitle><addtitle>Neuroinformatics</addtitle><description>Neurons are diverse and can be differentiated by their morphological, electrophysiological, and molecular properties. Current morphology-based classification approaches largely rely on the dendritic tree structure or on the overall axonal projection layout. Here, we use data from public databases of neuronal reconstructions and membrane properties to study the characteristics of the axonal and dendritic trees for interneuron classification. We show that combining signal propagation patterns observed by biophysical simulations of the activity along ramified axonal trees with morphological parameters of the axonal and dendritic trees, significantly improve classification results compared to previous approaches. The classification schemes introduced here can be utilized for robust neuronal classification. Our work paves the way for understanding and utilizing form-function principles in realistic neuronal reconstructions.</description><subject>Animals</subject><subject>Axons - physiology</subject><subject>Axons - ultrastructure</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - cytology</subject><subject>Brain - physiology</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>Electrophysiological Phenomena</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Interneurons - cytology</subject><subject>Interneurons - physiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Original Article</subject><issn>1539-2791</issn><issn>1559-0089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAyxQlmwCfsSJvazKq1IRSJQFK8txxyVVEhc7QfTvcVtgyWos3TNX44PQOcFXBOPiOhCKKUkxxSmWWZ6n4gANCecyxVjIw-2byZQWkgzQSQgrjGleYHyMBoyyLBdZMURv4y_X6jqZe4Dk0fn1u6vdcpPodpG8VMtt9OzdWi91V7k2udm0uqlMSKbN2rtPSKZtB76F3sdwUusQKluZHXuKjqyuA5z9zBF6vbudTx7S2dP9dDKepSbjRZcaKQsOC2olWCOtzamRWjDAJTGCWotLI3hBhCYlWMlAlpwWhGmjueAl02yELve98aCPHkKnmioYqGvdguuDokzmLP6cZxGle9R4F4IHq9a-arTfKILVVqnaK1VRqdopVSIuXfz092UDi7-VX4cRYHsgxKhdglcr1_toLvxX-w3L74NH</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Ofer, Netanel</creator><creator>Shefi, Orit</creator><creator>Yaari, Gur</creator><general>Springer US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20201001</creationdate><title>Axonal Tree Morphology and Signal Propagation Dynamics Improve Interneuron Classification</title><author>Ofer, Netanel ; Shefi, Orit ; Yaari, Gur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-c9975ed2f9efc9ff62c9a83e0b1c82ff0bc85718a1bef93e9b52713aca585b3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Axons - physiology</topic><topic>Axons - ultrastructure</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - cytology</topic><topic>Brain - physiology</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>Electrophysiological Phenomena</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Interneurons - cytology</topic><topic>Interneurons - physiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ofer, Netanel</creatorcontrib><creatorcontrib>Shefi, Orit</creatorcontrib><creatorcontrib>Yaari, Gur</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ofer, Netanel</au><au>Shefi, Orit</au><au>Yaari, Gur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axonal Tree Morphology and Signal Propagation Dynamics Improve Interneuron Classification</atitle><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle><stitle>Neuroinform</stitle><addtitle>Neuroinformatics</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>18</volume><issue>4</issue><spage>581</spage><epage>590</epage><pages>581-590</pages><issn>1539-2791</issn><eissn>1559-0089</eissn><abstract>Neurons are diverse and can be differentiated by their morphological, electrophysiological, and molecular properties. Current morphology-based classification approaches largely rely on the dendritic tree structure or on the overall axonal projection layout. Here, we use data from public databases of neuronal reconstructions and membrane properties to study the characteristics of the axonal and dendritic trees for interneuron classification. We show that combining signal propagation patterns observed by biophysical simulations of the activity along ramified axonal trees with morphological parameters of the axonal and dendritic trees, significantly improve classification results compared to previous approaches. The classification schemes introduced here can be utilized for robust neuronal classification. Our work paves the way for understanding and utilizing form-function principles in realistic neuronal reconstructions.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32346847</pmid><doi>10.1007/s12021-020-09466-8</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-2791 |
ispartof | Neuroinformatics (Totowa, N.J.), 2020-10, Vol.18 (4), p.581-590 |
issn | 1539-2791 1559-0089 |
language | eng |
recordid | cdi_proquest_miscellaneous_2396302654 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animals Axons - physiology Axons - ultrastructure Bioinformatics Biomedical and Life Sciences Biomedicine Brain - cytology Brain - physiology Computational Biology/Bioinformatics Computer Appl. in Life Sciences Electrophysiological Phenomena Humans Imaging, Three-Dimensional - methods Interneurons - cytology Interneurons - physiology Neurology Neurosciences Original Article |
title | Axonal Tree Morphology and Signal Propagation Dynamics Improve Interneuron Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axonal%20Tree%20Morphology%20and%20Signal%20Propagation%20Dynamics%20Improve%20Interneuron%20Classification&rft.jtitle=Neuroinformatics%20(Totowa,%20N.J.)&rft.au=Ofer,%20Netanel&rft.date=2020-10-01&rft.volume=18&rft.issue=4&rft.spage=581&rft.epage=590&rft.pages=581-590&rft.issn=1539-2791&rft.eissn=1559-0089&rft_id=info:doi/10.1007/s12021-020-09466-8&rft_dat=%3Cproquest_cross%3E2396302654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396302654&rft_id=info:pmid/32346847&rfr_iscdi=true |