Axonal Tree Morphology and Signal Propagation Dynamics Improve Interneuron Classification

Neurons are diverse and can be differentiated by their morphological, electrophysiological, and molecular properties. Current morphology-based classification approaches largely rely on the dendritic tree structure or on the overall axonal projection layout. Here, we use data from public databases of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroinformatics (Totowa, N.J.) N.J.), 2020-10, Vol.18 (4), p.581-590
Hauptverfasser: Ofer, Netanel, Shefi, Orit, Yaari, Gur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 590
container_issue 4
container_start_page 581
container_title Neuroinformatics (Totowa, N.J.)
container_volume 18
creator Ofer, Netanel
Shefi, Orit
Yaari, Gur
description Neurons are diverse and can be differentiated by their morphological, electrophysiological, and molecular properties. Current morphology-based classification approaches largely rely on the dendritic tree structure or on the overall axonal projection layout. Here, we use data from public databases of neuronal reconstructions and membrane properties to study the characteristics of the axonal and dendritic trees for interneuron classification. We show that combining signal propagation patterns observed by biophysical simulations of the activity along ramified axonal trees with morphological parameters of the axonal and dendritic trees, significantly improve classification results compared to previous approaches. The classification schemes introduced here can be utilized for robust neuronal classification. Our work paves the way for understanding and utilizing form-function principles in realistic neuronal reconstructions.
doi_str_mv 10.1007/s12021-020-09466-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2396302654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2396302654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-c9975ed2f9efc9ff62c9a83e0b1c82ff0bc85718a1bef93e9b52713aca585b3a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyxQlmwCfsSJvazKq1IRSJQFK8txxyVVEhc7QfTvcVtgyWos3TNX44PQOcFXBOPiOhCKKUkxxSmWWZ6n4gANCecyxVjIw-2byZQWkgzQSQgrjGleYHyMBoyyLBdZMURv4y_X6jqZe4Dk0fn1u6vdcpPodpG8VMtt9OzdWi91V7k2udm0uqlMSKbN2rtPSKZtB76F3sdwUusQKluZHXuKjqyuA5z9zBF6vbudTx7S2dP9dDKepSbjRZcaKQsOC2olWCOtzamRWjDAJTGCWotLI3hBhCYlWMlAlpwWhGmjueAl02yELve98aCPHkKnmioYqGvdguuDokzmLP6cZxGle9R4F4IHq9a-arTfKILVVqnaK1VRqdopVSIuXfz092UDi7-VX4cRYHsgxKhdglcr1_toLvxX-w3L74NH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396302654</pqid></control><display><type>article</type><title>Axonal Tree Morphology and Signal Propagation Dynamics Improve Interneuron Classification</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ofer, Netanel ; Shefi, Orit ; Yaari, Gur</creator><creatorcontrib>Ofer, Netanel ; Shefi, Orit ; Yaari, Gur</creatorcontrib><description>Neurons are diverse and can be differentiated by their morphological, electrophysiological, and molecular properties. Current morphology-based classification approaches largely rely on the dendritic tree structure or on the overall axonal projection layout. Here, we use data from public databases of neuronal reconstructions and membrane properties to study the characteristics of the axonal and dendritic trees for interneuron classification. We show that combining signal propagation patterns observed by biophysical simulations of the activity along ramified axonal trees with morphological parameters of the axonal and dendritic trees, significantly improve classification results compared to previous approaches. The classification schemes introduced here can be utilized for robust neuronal classification. Our work paves the way for understanding and utilizing form-function principles in realistic neuronal reconstructions.</description><identifier>ISSN: 1539-2791</identifier><identifier>EISSN: 1559-0089</identifier><identifier>DOI: 10.1007/s12021-020-09466-8</identifier><identifier>PMID: 32346847</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Axons - physiology ; Axons - ultrastructure ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Brain - cytology ; Brain - physiology ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; Electrophysiological Phenomena ; Humans ; Imaging, Three-Dimensional - methods ; Interneurons - cytology ; Interneurons - physiology ; Neurology ; Neurosciences ; Original Article</subject><ispartof>Neuroinformatics (Totowa, N.J.), 2020-10, Vol.18 (4), p.581-590</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-c9975ed2f9efc9ff62c9a83e0b1c82ff0bc85718a1bef93e9b52713aca585b3a3</citedby><cites>FETCH-LOGICAL-c457t-c9975ed2f9efc9ff62c9a83e0b1c82ff0bc85718a1bef93e9b52713aca585b3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12021-020-09466-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12021-020-09466-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32346847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ofer, Netanel</creatorcontrib><creatorcontrib>Shefi, Orit</creatorcontrib><creatorcontrib>Yaari, Gur</creatorcontrib><title>Axonal Tree Morphology and Signal Propagation Dynamics Improve Interneuron Classification</title><title>Neuroinformatics (Totowa, N.J.)</title><addtitle>Neuroinform</addtitle><addtitle>Neuroinformatics</addtitle><description>Neurons are diverse and can be differentiated by their morphological, electrophysiological, and molecular properties. Current morphology-based classification approaches largely rely on the dendritic tree structure or on the overall axonal projection layout. Here, we use data from public databases of neuronal reconstructions and membrane properties to study the characteristics of the axonal and dendritic trees for interneuron classification. We show that combining signal propagation patterns observed by biophysical simulations of the activity along ramified axonal trees with morphological parameters of the axonal and dendritic trees, significantly improve classification results compared to previous approaches. The classification schemes introduced here can be utilized for robust neuronal classification. Our work paves the way for understanding and utilizing form-function principles in realistic neuronal reconstructions.</description><subject>Animals</subject><subject>Axons - physiology</subject><subject>Axons - ultrastructure</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - cytology</subject><subject>Brain - physiology</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>Electrophysiological Phenomena</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Interneurons - cytology</subject><subject>Interneurons - physiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Original Article</subject><issn>1539-2791</issn><issn>1559-0089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAyxQlmwCfsSJvazKq1IRSJQFK8txxyVVEhc7QfTvcVtgyWos3TNX44PQOcFXBOPiOhCKKUkxxSmWWZ6n4gANCecyxVjIw-2byZQWkgzQSQgrjGleYHyMBoyyLBdZMURv4y_X6jqZe4Dk0fn1u6vdcpPodpG8VMtt9OzdWi91V7k2udm0uqlMSKbN2rtPSKZtB76F3sdwUusQKluZHXuKjqyuA5z9zBF6vbudTx7S2dP9dDKepSbjRZcaKQsOC2olWCOtzamRWjDAJTGCWotLI3hBhCYlWMlAlpwWhGmjueAl02yELve98aCPHkKnmioYqGvdguuDokzmLP6cZxGle9R4F4IHq9a-arTfKILVVqnaK1VRqdopVSIuXfz092UDi7-VX4cRYHsgxKhdglcr1_toLvxX-w3L74NH</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Ofer, Netanel</creator><creator>Shefi, Orit</creator><creator>Yaari, Gur</creator><general>Springer US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20201001</creationdate><title>Axonal Tree Morphology and Signal Propagation Dynamics Improve Interneuron Classification</title><author>Ofer, Netanel ; Shefi, Orit ; Yaari, Gur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-c9975ed2f9efc9ff62c9a83e0b1c82ff0bc85718a1bef93e9b52713aca585b3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Axons - physiology</topic><topic>Axons - ultrastructure</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - cytology</topic><topic>Brain - physiology</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>Electrophysiological Phenomena</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Interneurons - cytology</topic><topic>Interneurons - physiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ofer, Netanel</creatorcontrib><creatorcontrib>Shefi, Orit</creatorcontrib><creatorcontrib>Yaari, Gur</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ofer, Netanel</au><au>Shefi, Orit</au><au>Yaari, Gur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axonal Tree Morphology and Signal Propagation Dynamics Improve Interneuron Classification</atitle><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle><stitle>Neuroinform</stitle><addtitle>Neuroinformatics</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>18</volume><issue>4</issue><spage>581</spage><epage>590</epage><pages>581-590</pages><issn>1539-2791</issn><eissn>1559-0089</eissn><abstract>Neurons are diverse and can be differentiated by their morphological, electrophysiological, and molecular properties. Current morphology-based classification approaches largely rely on the dendritic tree structure or on the overall axonal projection layout. Here, we use data from public databases of neuronal reconstructions and membrane properties to study the characteristics of the axonal and dendritic trees for interneuron classification. We show that combining signal propagation patterns observed by biophysical simulations of the activity along ramified axonal trees with morphological parameters of the axonal and dendritic trees, significantly improve classification results compared to previous approaches. The classification schemes introduced here can be utilized for robust neuronal classification. Our work paves the way for understanding and utilizing form-function principles in realistic neuronal reconstructions.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32346847</pmid><doi>10.1007/s12021-020-09466-8</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-2791
ispartof Neuroinformatics (Totowa, N.J.), 2020-10, Vol.18 (4), p.581-590
issn 1539-2791
1559-0089
language eng
recordid cdi_proquest_miscellaneous_2396302654
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Axons - physiology
Axons - ultrastructure
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Brain - cytology
Brain - physiology
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Electrophysiological Phenomena
Humans
Imaging, Three-Dimensional - methods
Interneurons - cytology
Interneurons - physiology
Neurology
Neurosciences
Original Article
title Axonal Tree Morphology and Signal Propagation Dynamics Improve Interneuron Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axonal%20Tree%20Morphology%20and%20Signal%20Propagation%20Dynamics%20Improve%20Interneuron%20Classification&rft.jtitle=Neuroinformatics%20(Totowa,%20N.J.)&rft.au=Ofer,%20Netanel&rft.date=2020-10-01&rft.volume=18&rft.issue=4&rft.spage=581&rft.epage=590&rft.pages=581-590&rft.issn=1539-2791&rft.eissn=1559-0089&rft_id=info:doi/10.1007/s12021-020-09466-8&rft_dat=%3Cproquest_cross%3E2396302654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396302654&rft_id=info:pmid/32346847&rfr_iscdi=true