Minimizing electron-hole pair recombination through band-gap engineering in novel ZnO-CeO2-rGO ternary nanocomposite for photoelectrochemical and photocatalytic applications
A novel ZnO-CeO 2 -rGO (ZCG) ternary nanocomposite with varying ZnO/CeO 2 weight proportions was synthesized by a hydrothermal process for photoelectrochemical water splitting and photocatalytic application. XRD diffraction peaks of ZCG nanocomposites displayed the patterns of ZnO and CeO 2 nanopart...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2020-07, Vol.27 (20), p.25042-25056 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25056 |
---|---|
container_issue | 20 |
container_start_page | 25042 |
container_title | Environmental science and pollution research international |
container_volume | 27 |
creator | Murali, Arun Sarswat, Prashant K. Free, Michael L. |
description | A novel ZnO-CeO
2
-rGO (ZCG) ternary nanocomposite with varying ZnO/CeO
2
weight proportions was synthesized by a hydrothermal process for photoelectrochemical water splitting and photocatalytic application. XRD diffraction peaks of ZCG nanocomposites displayed the patterns of ZnO and CeO
2
nanoparticles, and SEM revealed irregular flake-like particles, which were uniformly decorated on the rGO matrix. Increase in the intensity ratio of D and G bands from Raman spectra revealed changes in oxygen bonding in the ZnO-rGO (ZG) and ZCG nanocomposites. The shift in the band edge positions and the decrease in the band gap with increase in the cerium oxide content in ZCG composites were observed from UV-Vis and Mott-Schottky plots. XPS results showed that Ce
3+
fraction increased with an increase in the cerium oxide content in ZCG nanocomposites. The ZCG3 (85:15) nanocomposite exhibited decreased electron-hole recombination rate as evidenced from the photoluminescence and electrochemical impedance spectroscopy Nyquist plots. The characteristic frequency in Bode’s plot shifted to a lower frequency for the ZCG3 electrode demonstrating low interfacial charge transfer resistance, and ZCG3 photoelectrode displayed a higher photocurrent density of 0.69 mA/cm
2
at 1.5 V compared with other photoelectrode. The optimized and highly efficient ZCG3 nanocomposite exhibited improved photocatalytic degradation of methylene blue (MB) with a reaction rate constant of 0.0201 min
−1
. Combination of defects in the form of Ce
3+
ion and surface oxygen vacancies coupled with rGO as the electron acceptor improved the charge carrier density and carrier transport in addition to the formation Schottky-type junction and the presence of an internal electric field. |
doi_str_mv | 10.1007/s11356-020-08990-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2395616125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395616125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-54ac87b1ddb2bb262b76fa2a38f2a57ef4df5fdfc7aa984ef76747c8cd7b22783</originalsourceid><addsrcrecordid>eNp9kcGOFCEURYnRxHb0B1yRuHGDAxRVFEvT0dFkJr3RjZsKRT26mFBQAm0y_U_zj9LWJCYuXLF4597Huxeht4x-YJTK68xY03aEckporxQl52doxzomiBRKPUc7qoQgrBHiJXqV8z2tpOJyhx7vXHCLO7twxODBlBQDmaMHvGqXcAITl9EFXVwMuMwpno4zHnWYyFGvGMLRBYB0UbuAQ_wFHv8IB7KHAyfp5oALpKDTAw46xGq1xuwKYBsTXudY4tNKM8PijPa4Gm8Do4v2D8UZrNfV19nlA_k1emG1z_Dm6b1C3z9_-rb_Qm4PN1_3H2-JaXpVSCu06eXIpmnk48g7PsrOaq6b3nLdSrBisq2drJFaq16AlZ0U0vRmkiPnsm-u0PvNd03x5wlyGRaXDXivA8RTHnij2q7Gy9uKvvsHvY-nerOvlGCK07YVXaX4RpkUc05ghzW5pQYzMDpcGhy2Bofay_CnweFcRc0myuslYUh_rf-j-g3hvKTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419205546</pqid></control><display><type>article</type><title>Minimizing electron-hole pair recombination through band-gap engineering in novel ZnO-CeO2-rGO ternary nanocomposite for photoelectrochemical and photocatalytic applications</title><source>Springer Nature - Complete Springer Journals</source><creator>Murali, Arun ; Sarswat, Prashant K. ; Free, Michael L.</creator><creatorcontrib>Murali, Arun ; Sarswat, Prashant K. ; Free, Michael L.</creatorcontrib><description>A novel ZnO-CeO
2
-rGO (ZCG) ternary nanocomposite with varying ZnO/CeO
2
weight proportions was synthesized by a hydrothermal process for photoelectrochemical water splitting and photocatalytic application. XRD diffraction peaks of ZCG nanocomposites displayed the patterns of ZnO and CeO
2
nanoparticles, and SEM revealed irregular flake-like particles, which were uniformly decorated on the rGO matrix. Increase in the intensity ratio of D and G bands from Raman spectra revealed changes in oxygen bonding in the ZnO-rGO (ZG) and ZCG nanocomposites. The shift in the band edge positions and the decrease in the band gap with increase in the cerium oxide content in ZCG composites were observed from UV-Vis and Mott-Schottky plots. XPS results showed that Ce
3+
fraction increased with an increase in the cerium oxide content in ZCG nanocomposites. The ZCG3 (85:15) nanocomposite exhibited decreased electron-hole recombination rate as evidenced from the photoluminescence and electrochemical impedance spectroscopy Nyquist plots. The characteristic frequency in Bode’s plot shifted to a lower frequency for the ZCG3 electrode demonstrating low interfacial charge transfer resistance, and ZCG3 photoelectrode displayed a higher photocurrent density of 0.69 mA/cm
2
at 1.5 V compared with other photoelectrode. The optimized and highly efficient ZCG3 nanocomposite exhibited improved photocatalytic degradation of methylene blue (MB) with a reaction rate constant of 0.0201 min
−1
. Combination of defects in the form of Ce
3+
ion and surface oxygen vacancies coupled with rGO as the electron acceptor improved the charge carrier density and carrier transport in addition to the formation Schottky-type junction and the presence of an internal electric field.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-020-08990-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Carrier density ; Carrier transport ; Cerium ; Cerium oxides ; Charge density ; Charge transfer ; Current carriers ; Diffraction patterns ; Earth and Environmental Science ; Ecotoxicology ; Electric fields ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrons ; Energy gap ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Flakes (defects) ; Holes (electron deficiencies) ; Methylene blue ; Nanocomposites ; Nanoparticles ; Nyquist plots ; Oxygen ; Photocatalysis ; Photodegradation ; Photoelectric effect ; Photoelectric emission ; Photoluminescence ; Photons ; Raman spectra ; Raman spectroscopy ; Recombination ; Research Article ; Spectrum analysis ; Waste Water Technology ; Water Management ; Water Pollution Control ; Water splitting ; Zinc oxide</subject><ispartof>Environmental science and pollution research international, 2020-07, Vol.27 (20), p.25042-25056</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-54ac87b1ddb2bb262b76fa2a38f2a57ef4df5fdfc7aa984ef76747c8cd7b22783</citedby><cites>FETCH-LOGICAL-c389t-54ac87b1ddb2bb262b76fa2a38f2a57ef4df5fdfc7aa984ef76747c8cd7b22783</cites><orcidid>0000-0003-1703-9350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-020-08990-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-020-08990-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Murali, Arun</creatorcontrib><creatorcontrib>Sarswat, Prashant K.</creatorcontrib><creatorcontrib>Free, Michael L.</creatorcontrib><title>Minimizing electron-hole pair recombination through band-gap engineering in novel ZnO-CeO2-rGO ternary nanocomposite for photoelectrochemical and photocatalytic applications</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><description>A novel ZnO-CeO
2
-rGO (ZCG) ternary nanocomposite with varying ZnO/CeO
2
weight proportions was synthesized by a hydrothermal process for photoelectrochemical water splitting and photocatalytic application. XRD diffraction peaks of ZCG nanocomposites displayed the patterns of ZnO and CeO
2
nanoparticles, and SEM revealed irregular flake-like particles, which were uniformly decorated on the rGO matrix. Increase in the intensity ratio of D and G bands from Raman spectra revealed changes in oxygen bonding in the ZnO-rGO (ZG) and ZCG nanocomposites. The shift in the band edge positions and the decrease in the band gap with increase in the cerium oxide content in ZCG composites were observed from UV-Vis and Mott-Schottky plots. XPS results showed that Ce
3+
fraction increased with an increase in the cerium oxide content in ZCG nanocomposites. The ZCG3 (85:15) nanocomposite exhibited decreased electron-hole recombination rate as evidenced from the photoluminescence and electrochemical impedance spectroscopy Nyquist plots. The characteristic frequency in Bode’s plot shifted to a lower frequency for the ZCG3 electrode demonstrating low interfacial charge transfer resistance, and ZCG3 photoelectrode displayed a higher photocurrent density of 0.69 mA/cm
2
at 1.5 V compared with other photoelectrode. The optimized and highly efficient ZCG3 nanocomposite exhibited improved photocatalytic degradation of methylene blue (MB) with a reaction rate constant of 0.0201 min
−1
. Combination of defects in the form of Ce
3+
ion and surface oxygen vacancies coupled with rGO as the electron acceptor improved the charge carrier density and carrier transport in addition to the formation Schottky-type junction and the presence of an internal electric field.</description><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Carrier density</subject><subject>Carrier transport</subject><subject>Cerium</subject><subject>Cerium oxides</subject><subject>Charge density</subject><subject>Charge transfer</subject><subject>Current carriers</subject><subject>Diffraction patterns</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Electric fields</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrons</subject><subject>Energy gap</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Flakes (defects)</subject><subject>Holes (electron deficiencies)</subject><subject>Methylene blue</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nyquist plots</subject><subject>Oxygen</subject><subject>Photocatalysis</subject><subject>Photodegradation</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Recombination</subject><subject>Research Article</subject><subject>Spectrum analysis</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Water splitting</subject><subject>Zinc oxide</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcGOFCEURYnRxHb0B1yRuHGDAxRVFEvT0dFkJr3RjZsKRT26mFBQAm0y_U_zj9LWJCYuXLF4597Huxeht4x-YJTK68xY03aEckporxQl52doxzomiBRKPUc7qoQgrBHiJXqV8z2tpOJyhx7vXHCLO7twxODBlBQDmaMHvGqXcAITl9EFXVwMuMwpno4zHnWYyFGvGMLRBYB0UbuAQ_wFHv8IB7KHAyfp5oALpKDTAw46xGq1xuwKYBsTXudY4tNKM8PijPa4Gm8Do4v2D8UZrNfV19nlA_k1emG1z_Dm6b1C3z9_-rb_Qm4PN1_3H2-JaXpVSCu06eXIpmnk48g7PsrOaq6b3nLdSrBisq2drJFaq16AlZ0U0vRmkiPnsm-u0PvNd03x5wlyGRaXDXivA8RTHnij2q7Gy9uKvvsHvY-nerOvlGCK07YVXaX4RpkUc05ghzW5pQYzMDpcGhy2Bofay_CnweFcRc0myuslYUh_rf-j-g3hvKTg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Murali, Arun</creator><creator>Sarswat, Prashant K.</creator><creator>Free, Michael L.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1703-9350</orcidid></search><sort><creationdate>20200701</creationdate><title>Minimizing electron-hole pair recombination through band-gap engineering in novel ZnO-CeO2-rGO ternary nanocomposite for photoelectrochemical and photocatalytic applications</title><author>Murali, Arun ; Sarswat, Prashant K. ; Free, Michael L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-54ac87b1ddb2bb262b76fa2a38f2a57ef4df5fdfc7aa984ef76747c8cd7b22783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Carrier density</topic><topic>Carrier transport</topic><topic>Cerium</topic><topic>Cerium oxides</topic><topic>Charge density</topic><topic>Charge transfer</topic><topic>Current carriers</topic><topic>Diffraction patterns</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Electric fields</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrons</topic><topic>Energy gap</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Flakes (defects)</topic><topic>Holes (electron deficiencies)</topic><topic>Methylene blue</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nyquist plots</topic><topic>Oxygen</topic><topic>Photocatalysis</topic><topic>Photodegradation</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Recombination</topic><topic>Research Article</topic><topic>Spectrum analysis</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Water splitting</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murali, Arun</creatorcontrib><creatorcontrib>Sarswat, Prashant K.</creatorcontrib><creatorcontrib>Free, Michael L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murali, Arun</au><au>Sarswat, Prashant K.</au><au>Free, Michael L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimizing electron-hole pair recombination through band-gap engineering in novel ZnO-CeO2-rGO ternary nanocomposite for photoelectrochemical and photocatalytic applications</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>27</volume><issue>20</issue><spage>25042</spage><epage>25056</epage><pages>25042-25056</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>A novel ZnO-CeO
2
-rGO (ZCG) ternary nanocomposite with varying ZnO/CeO
2
weight proportions was synthesized by a hydrothermal process for photoelectrochemical water splitting and photocatalytic application. XRD diffraction peaks of ZCG nanocomposites displayed the patterns of ZnO and CeO
2
nanoparticles, and SEM revealed irregular flake-like particles, which were uniformly decorated on the rGO matrix. Increase in the intensity ratio of D and G bands from Raman spectra revealed changes in oxygen bonding in the ZnO-rGO (ZG) and ZCG nanocomposites. The shift in the band edge positions and the decrease in the band gap with increase in the cerium oxide content in ZCG composites were observed from UV-Vis and Mott-Schottky plots. XPS results showed that Ce
3+
fraction increased with an increase in the cerium oxide content in ZCG nanocomposites. The ZCG3 (85:15) nanocomposite exhibited decreased electron-hole recombination rate as evidenced from the photoluminescence and electrochemical impedance spectroscopy Nyquist plots. The characteristic frequency in Bode’s plot shifted to a lower frequency for the ZCG3 electrode demonstrating low interfacial charge transfer resistance, and ZCG3 photoelectrode displayed a higher photocurrent density of 0.69 mA/cm
2
at 1.5 V compared with other photoelectrode. The optimized and highly efficient ZCG3 nanocomposite exhibited improved photocatalytic degradation of methylene blue (MB) with a reaction rate constant of 0.0201 min
−1
. Combination of defects in the form of Ce
3+
ion and surface oxygen vacancies coupled with rGO as the electron acceptor improved the charge carrier density and carrier transport in addition to the formation Schottky-type junction and the presence of an internal electric field.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11356-020-08990-z</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1703-9350</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2020-07, Vol.27 (20), p.25042-25056 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_2395616125 |
source | Springer Nature - Complete Springer Journals |
subjects | Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Carrier density Carrier transport Cerium Cerium oxides Charge density Charge transfer Current carriers Diffraction patterns Earth and Environmental Science Ecotoxicology Electric fields Electrochemical impedance spectroscopy Electrochemistry Electrons Energy gap Environment Environmental Chemistry Environmental Health Environmental science Flakes (defects) Holes (electron deficiencies) Methylene blue Nanocomposites Nanoparticles Nyquist plots Oxygen Photocatalysis Photodegradation Photoelectric effect Photoelectric emission Photoluminescence Photons Raman spectra Raman spectroscopy Recombination Research Article Spectrum analysis Waste Water Technology Water Management Water Pollution Control Water splitting Zinc oxide |
title | Minimizing electron-hole pair recombination through band-gap engineering in novel ZnO-CeO2-rGO ternary nanocomposite for photoelectrochemical and photocatalytic applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimizing%20electron-hole%20pair%20recombination%20through%20band-gap%20engineering%20in%20novel%20ZnO-CeO2-rGO%20ternary%20nanocomposite%20for%20photoelectrochemical%20and%20photocatalytic%20applications&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Murali,%20Arun&rft.date=2020-07-01&rft.volume=27&rft.issue=20&rft.spage=25042&rft.epage=25056&rft.pages=25042-25056&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-020-08990-z&rft_dat=%3Cproquest_cross%3E2395616125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419205546&rft_id=info:pmid/&rfr_iscdi=true |