On the mathematical modelling and data assimilation for air pollution assessment in the Tropical Andes
Air pollution assessment in the Tropical Andes requires a multidisciplinary approach. This can be supported from the understanding of the underlying biological dynamics and atmospheric behavior, to the mathematical approach for the proper use of all available information. This review paper touches o...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2020-10, Vol.27 (29), p.35993-36012 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36012 |
---|---|
container_issue | 29 |
container_start_page | 35993 |
container_title | Environmental science and pollution research international |
container_volume | 27 |
creator | Montoya, O. L. Quintero Niño-Ruiz, Elías D. Pinel, Nicolás |
description | Air pollution assessment in the Tropical Andes requires a multidisciplinary approach. This can be supported from the understanding of the underlying biological dynamics and atmospheric behavior, to the mathematical approach for the proper use of all available information. This review paper touches on several aspects in which mathematical models can help to solve challenging problems regarding air pollution in reviewing the state-of-the-art at the global level and assessing the corresponding state of development as applied to the Tropical Andes. We address the complexities and challenges that modelling atmospheric dynamics in a mega-diverse region with abrupt topography entails. Understanding the relevance of monitoring and facing the problems of data scarcity, we call attention to the usefulness of data assimilation for uncertainty reduction, and how these techniques could help tackle the scarcity of regional monitoring networks to accelerate the implementation and development of modelling systems for air quality in the Tropical Andes. Finally, we suggest a cyberphysical framework for decision-making processes based on the data assimilation of chemical transport models, the forecast of scenarios, and their use in regulation and policy making. |
doi_str_mv | 10.1007/s11356-020-08268-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2395258612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438348026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-bbc11db3072d6888d8dc69e99f1fe18ecca663c92e69e77a2434541ebc4a24523</originalsourceid><addsrcrecordid>eNp9kU1PxCAQhonRuOvHH_BgSLx4qfJVCsfNxq9kEy96JhTo2k0LK7QH_724XTXx4GUgM8-8A-8AcIHRDUaouk0Y05IXiKACCcJFwQ7AHHPMiopJeQjmSDJWYMrYDJyktEGZlKQ6BjNKKC0FZXPQPHs4vDnY6xxzaI3uYB-s67rWr6H2Flo9aKhTavu2y0DwsAkR6jbCbei6cZfJZZdS7_wA20nwJYbtTmzhrUtn4KjRXXLn-_MUvN7fvSwfi9Xzw9NysSoMq6qhqGuDsa0pqojlQggrrOHSSdngxmHhjNGcUyOJy9mq0oRRVjLsasPyvST0FFxPutsY3keXBtW3yeTPaO_CmBShsiSl4PgLvfqDbsIYfX6dyrLZHIEIzxSZKBNDStE1ahvbXscPhZH62oKatqCyt2q3BcVy0-Veeqx7Z39avm3PAJ2AlEt-7eLv7H9kPwEOLZK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438348026</pqid></control><display><type>article</type><title>On the mathematical modelling and data assimilation for air pollution assessment in the Tropical Andes</title><source>Springer Journals</source><creator>Montoya, O. L. Quintero ; Niño-Ruiz, Elías D. ; Pinel, Nicolás</creator><creatorcontrib>Montoya, O. L. Quintero ; Niño-Ruiz, Elías D. ; Pinel, Nicolás</creatorcontrib><description>Air pollution assessment in the Tropical Andes requires a multidisciplinary approach. This can be supported from the understanding of the underlying biological dynamics and atmospheric behavior, to the mathematical approach for the proper use of all available information. This review paper touches on several aspects in which mathematical models can help to solve challenging problems regarding air pollution in reviewing the state-of-the-art at the global level and assessing the corresponding state of development as applied to the Tropical Andes. We address the complexities and challenges that modelling atmospheric dynamics in a mega-diverse region with abrupt topography entails. Understanding the relevance of monitoring and facing the problems of data scarcity, we call attention to the usefulness of data assimilation for uncertainty reduction, and how these techniques could help tackle the scarcity of regional monitoring networks to accelerate the implementation and development of modelling systems for air quality in the Tropical Andes. Finally, we suggest a cyberphysical framework for decision-making processes based on the data assimilation of chemical transport models, the forecast of scenarios, and their use in regulation and policy making.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-020-08268-4</identifier><identifier>PMID: 32335834</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Air pollution ; Air quality ; Aquatic Pollution ; Atmospheric models ; Atmospheric Protection/Air Quality Control/Air Pollution ; Chemical transport ; Climate and Pollution: From Measurement to Modeling Applications ; Corresponding states ; Data assimilation ; Data collection ; Decision making ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental assessment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Mathematical analysis ; Mathematical models ; Monitoring ; Outdoor air quality ; Regional development ; State-of-the-art reviews ; Urban Air Quality ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2020-10, Vol.27 (29), p.35993-36012</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-bbc11db3072d6888d8dc69e99f1fe18ecca663c92e69e77a2434541ebc4a24523</citedby><cites>FETCH-LOGICAL-c477t-bbc11db3072d6888d8dc69e99f1fe18ecca663c92e69e77a2434541ebc4a24523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-020-08268-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-020-08268-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32335834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Montoya, O. L. Quintero</creatorcontrib><creatorcontrib>Niño-Ruiz, Elías D.</creatorcontrib><creatorcontrib>Pinel, Nicolás</creatorcontrib><title>On the mathematical modelling and data assimilation for air pollution assessment in the Tropical Andes</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Air pollution assessment in the Tropical Andes requires a multidisciplinary approach. This can be supported from the understanding of the underlying biological dynamics and atmospheric behavior, to the mathematical approach for the proper use of all available information. This review paper touches on several aspects in which mathematical models can help to solve challenging problems regarding air pollution in reviewing the state-of-the-art at the global level and assessing the corresponding state of development as applied to the Tropical Andes. We address the complexities and challenges that modelling atmospheric dynamics in a mega-diverse region with abrupt topography entails. Understanding the relevance of monitoring and facing the problems of data scarcity, we call attention to the usefulness of data assimilation for uncertainty reduction, and how these techniques could help tackle the scarcity of regional monitoring networks to accelerate the implementation and development of modelling systems for air quality in the Tropical Andes. Finally, we suggest a cyberphysical framework for decision-making processes based on the data assimilation of chemical transport models, the forecast of scenarios, and their use in regulation and policy making.</description><subject>Air pollution</subject><subject>Air quality</subject><subject>Aquatic Pollution</subject><subject>Atmospheric models</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Chemical transport</subject><subject>Climate and Pollution: From Measurement to Modeling Applications</subject><subject>Corresponding states</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Decision making</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental assessment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Outdoor air quality</subject><subject>Regional development</subject><subject>State-of-the-art reviews</subject><subject>Urban Air Quality</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1PxCAQhonRuOvHH_BgSLx4qfJVCsfNxq9kEy96JhTo2k0LK7QH_724XTXx4GUgM8-8A-8AcIHRDUaouk0Y05IXiKACCcJFwQ7AHHPMiopJeQjmSDJWYMrYDJyktEGZlKQ6BjNKKC0FZXPQPHs4vDnY6xxzaI3uYB-s67rWr6H2Flo9aKhTavu2y0DwsAkR6jbCbei6cZfJZZdS7_wA20nwJYbtTmzhrUtn4KjRXXLn-_MUvN7fvSwfi9Xzw9NysSoMq6qhqGuDsa0pqojlQggrrOHSSdngxmHhjNGcUyOJy9mq0oRRVjLsasPyvST0FFxPutsY3keXBtW3yeTPaO_CmBShsiSl4PgLvfqDbsIYfX6dyrLZHIEIzxSZKBNDStE1ahvbXscPhZH62oKatqCyt2q3BcVy0-Veeqx7Z39avm3PAJ2AlEt-7eLv7H9kPwEOLZK8</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Montoya, O. L. Quintero</creator><creator>Niño-Ruiz, Elías D.</creator><creator>Pinel, Nicolás</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20201001</creationdate><title>On the mathematical modelling and data assimilation for air pollution assessment in the Tropical Andes</title><author>Montoya, O. L. Quintero ; Niño-Ruiz, Elías D. ; Pinel, Nicolás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-bbc11db3072d6888d8dc69e99f1fe18ecca663c92e69e77a2434541ebc4a24523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air pollution</topic><topic>Air quality</topic><topic>Aquatic Pollution</topic><topic>Atmospheric models</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Chemical transport</topic><topic>Climate and Pollution: From Measurement to Modeling Applications</topic><topic>Corresponding states</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Decision making</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental assessment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Outdoor air quality</topic><topic>Regional development</topic><topic>State-of-the-art reviews</topic><topic>Urban Air Quality</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montoya, O. L. Quintero</creatorcontrib><creatorcontrib>Niño-Ruiz, Elías D.</creatorcontrib><creatorcontrib>Pinel, Nicolás</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montoya, O. L. Quintero</au><au>Niño-Ruiz, Elías D.</au><au>Pinel, Nicolás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the mathematical modelling and data assimilation for air pollution assessment in the Tropical Andes</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>27</volume><issue>29</issue><spage>35993</spage><epage>36012</epage><pages>35993-36012</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Air pollution assessment in the Tropical Andes requires a multidisciplinary approach. This can be supported from the understanding of the underlying biological dynamics and atmospheric behavior, to the mathematical approach for the proper use of all available information. This review paper touches on several aspects in which mathematical models can help to solve challenging problems regarding air pollution in reviewing the state-of-the-art at the global level and assessing the corresponding state of development as applied to the Tropical Andes. We address the complexities and challenges that modelling atmospheric dynamics in a mega-diverse region with abrupt topography entails. Understanding the relevance of monitoring and facing the problems of data scarcity, we call attention to the usefulness of data assimilation for uncertainty reduction, and how these techniques could help tackle the scarcity of regional monitoring networks to accelerate the implementation and development of modelling systems for air quality in the Tropical Andes. Finally, we suggest a cyberphysical framework for decision-making processes based on the data assimilation of chemical transport models, the forecast of scenarios, and their use in regulation and policy making.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32335834</pmid><doi>10.1007/s11356-020-08268-4</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2020-10, Vol.27 (29), p.35993-36012 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_2395258612 |
source | Springer Journals |
subjects | Air pollution Air quality Aquatic Pollution Atmospheric models Atmospheric Protection/Air Quality Control/Air Pollution Chemical transport Climate and Pollution: From Measurement to Modeling Applications Corresponding states Data assimilation Data collection Decision making Earth and Environmental Science Ecotoxicology Environment Environmental assessment Environmental Chemistry Environmental Health Environmental science Mathematical analysis Mathematical models Monitoring Outdoor air quality Regional development State-of-the-art reviews Urban Air Quality Waste Water Technology Water Management Water Pollution Control |
title | On the mathematical modelling and data assimilation for air pollution assessment in the Tropical Andes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20mathematical%20modelling%20and%20data%20assimilation%20for%20air%20pollution%20assessment%20in%20the%20Tropical%20Andes&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Montoya,%20O.%20L.%20Quintero&rft.date=2020-10-01&rft.volume=27&rft.issue=29&rft.spage=35993&rft.epage=36012&rft.pages=35993-36012&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-020-08268-4&rft_dat=%3Cproquest_cross%3E2438348026%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438348026&rft_id=info:pmid/32335834&rfr_iscdi=true |