Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging
Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2020-07, Vol.110, p.15-36 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 |
---|---|
container_issue | |
container_start_page | 15 |
container_title | Acta biomaterialia |
container_volume | 110 |
creator | Yang, Chang-Tong Hattiholi, Aishwarya Selvan, Subramanian Tamil Yan, Sean Xuexian Fang, Wei-Wei Chandrasekharan, Prashant Koteswaraiah, Podili Herold, Christian J. Gulyás, Balázs Aw, Swee Eng He, Tao Ng, David Chee Eng Padmanabhan, Parasuraman |
description | Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review.
The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd3+ ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work.
[Display omitted] |
doi_str_mv | 10.1016/j.actbio.2020.03.047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2395258498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706120301884</els_id><sourcerecordid>2395258498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-424dad52278834e92a7685dae1a5ab5f0cb68920876ea4f92e94b5b4f9c85b753</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVJqN0k_6CUhVx62bU-V9pLIYTWKRh6SSk9CX2MHZndlSPtBvLvK-Okhxxy0oh53tHoQegzwQ3BpF3tG-MmG2JDMcUNZg3m8gNaEiVVLUWrzkotOa0lbskCfcp5jzFThKqPaMEoY4IRvER_18bHPoxhHmprMvjKhiF601eHFC3kaooVjA9mdFDdk_oPhN3DVKjB7EaYgqsS5Dge26t4KPcSDKUXxt0lOt-aPsPVy3mBfv_4fn97V29-rX_e3mxqxzo81Zxyb7ygVCrFOHTUyFYJb4AYYazYYmdb1VGsZAuGbzsKHbfClsopYaVgF-jraW5Z-HGGPOkhZAd9b0aIc9aUdYIKxTtV0Os36D7OaSzbaco57liryJHiJ8qlmHOCrT6k8qf0rAnWR_V6r0_q9VG9xkwX9SX25WX4bAfw_0Ovrgvw7QRAsfEUIOnsAhRzPiRwk_YxvP_CP7a-leM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440936818</pqid></control><display><type>article</type><title>Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, Chang-Tong ; Hattiholi, Aishwarya ; Selvan, Subramanian Tamil ; Yan, Sean Xuexian ; Fang, Wei-Wei ; Chandrasekharan, Prashant ; Koteswaraiah, Podili ; Herold, Christian J. ; Gulyás, Balázs ; Aw, Swee Eng ; He, Tao ; Ng, David Chee Eng ; Padmanabhan, Parasuraman</creator><creatorcontrib>Yang, Chang-Tong ; Hattiholi, Aishwarya ; Selvan, Subramanian Tamil ; Yan, Sean Xuexian ; Fang, Wei-Wei ; Chandrasekharan, Prashant ; Koteswaraiah, Podili ; Herold, Christian J. ; Gulyás, Balázs ; Aw, Swee Eng ; He, Tao ; Ng, David Chee Eng ; Padmanabhan, Parasuraman</creatorcontrib><description>Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review.
The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd3+ ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work.
[Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2020.03.047</identifier><identifier>PMID: 32335310</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bimodality imaging probe ; Biocompatibility ; Conjugation ; Contrast agent ; Contrast agents ; Contrast Media ; Diagnostic systems ; Diethylenetriamine pentaacetic acid ; Electron spin ; Gadolinium ; Liposomes ; Magnetic moments ; Magnetic Resonance Imaging ; Magnetic Resonance Spectroscopy ; Medical imaging ; Micelles ; MRI ; Nanomaterials ; Nanoparticles ; Optical Imaging ; Plasma proteins ; Polymers ; Probes ; Relaxation time ; Resonance ; Sensitivity ; Spatial discrimination ; Spatial resolution</subject><ispartof>Acta biomaterialia, 2020-07, Vol.110, p.15-36</ispartof><rights>2020 Acta Materialia Inc.</rights><rights>Copyright © 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Jul 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-424dad52278834e92a7685dae1a5ab5f0cb68920876ea4f92e94b5b4f9c85b753</citedby><cites>FETCH-LOGICAL-c390t-424dad52278834e92a7685dae1a5ab5f0cb68920876ea4f92e94b5b4f9c85b753</cites><orcidid>0000-0003-3475-7944 ; 0000-0002-1524-2374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706120301884$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32335310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Chang-Tong</creatorcontrib><creatorcontrib>Hattiholi, Aishwarya</creatorcontrib><creatorcontrib>Selvan, Subramanian Tamil</creatorcontrib><creatorcontrib>Yan, Sean Xuexian</creatorcontrib><creatorcontrib>Fang, Wei-Wei</creatorcontrib><creatorcontrib>Chandrasekharan, Prashant</creatorcontrib><creatorcontrib>Koteswaraiah, Podili</creatorcontrib><creatorcontrib>Herold, Christian J.</creatorcontrib><creatorcontrib>Gulyás, Balázs</creatorcontrib><creatorcontrib>Aw, Swee Eng</creatorcontrib><creatorcontrib>He, Tao</creatorcontrib><creatorcontrib>Ng, David Chee Eng</creatorcontrib><creatorcontrib>Padmanabhan, Parasuraman</creatorcontrib><title>Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review.
The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd3+ ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work.
[Display omitted]</description><subject>Bimodality imaging probe</subject><subject>Biocompatibility</subject><subject>Conjugation</subject><subject>Contrast agent</subject><subject>Contrast agents</subject><subject>Contrast Media</subject><subject>Diagnostic systems</subject><subject>Diethylenetriamine pentaacetic acid</subject><subject>Electron spin</subject><subject>Gadolinium</subject><subject>Liposomes</subject><subject>Magnetic moments</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Medical imaging</subject><subject>Micelles</subject><subject>MRI</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Optical Imaging</subject><subject>Plasma proteins</subject><subject>Polymers</subject><subject>Probes</subject><subject>Relaxation time</subject><subject>Resonance</subject><subject>Sensitivity</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1rGzEQhkVJqN0k_6CUhVx62bU-V9pLIYTWKRh6SSk9CX2MHZndlSPtBvLvK-Okhxxy0oh53tHoQegzwQ3BpF3tG-MmG2JDMcUNZg3m8gNaEiVVLUWrzkotOa0lbskCfcp5jzFThKqPaMEoY4IRvER_18bHPoxhHmprMvjKhiF601eHFC3kaooVjA9mdFDdk_oPhN3DVKjB7EaYgqsS5Dge26t4KPcSDKUXxt0lOt-aPsPVy3mBfv_4fn97V29-rX_e3mxqxzo81Zxyb7ygVCrFOHTUyFYJb4AYYazYYmdb1VGsZAuGbzsKHbfClsopYaVgF-jraW5Z-HGGPOkhZAd9b0aIc9aUdYIKxTtV0Os36D7OaSzbaco57liryJHiJ8qlmHOCrT6k8qf0rAnWR_V6r0_q9VG9xkwX9SX25WX4bAfw_0Ovrgvw7QRAsfEUIOnsAhRzPiRwk_YxvP_CP7a-leM</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Yang, Chang-Tong</creator><creator>Hattiholi, Aishwarya</creator><creator>Selvan, Subramanian Tamil</creator><creator>Yan, Sean Xuexian</creator><creator>Fang, Wei-Wei</creator><creator>Chandrasekharan, Prashant</creator><creator>Koteswaraiah, Podili</creator><creator>Herold, Christian J.</creator><creator>Gulyás, Balázs</creator><creator>Aw, Swee Eng</creator><creator>He, Tao</creator><creator>Ng, David Chee Eng</creator><creator>Padmanabhan, Parasuraman</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3475-7944</orcidid><orcidid>https://orcid.org/0000-0002-1524-2374</orcidid></search><sort><creationdate>20200701</creationdate><title>Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging</title><author>Yang, Chang-Tong ; Hattiholi, Aishwarya ; Selvan, Subramanian Tamil ; Yan, Sean Xuexian ; Fang, Wei-Wei ; Chandrasekharan, Prashant ; Koteswaraiah, Podili ; Herold, Christian J. ; Gulyás, Balázs ; Aw, Swee Eng ; He, Tao ; Ng, David Chee Eng ; Padmanabhan, Parasuraman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-424dad52278834e92a7685dae1a5ab5f0cb68920876ea4f92e94b5b4f9c85b753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bimodality imaging probe</topic><topic>Biocompatibility</topic><topic>Conjugation</topic><topic>Contrast agent</topic><topic>Contrast agents</topic><topic>Contrast Media</topic><topic>Diagnostic systems</topic><topic>Diethylenetriamine pentaacetic acid</topic><topic>Electron spin</topic><topic>Gadolinium</topic><topic>Liposomes</topic><topic>Magnetic moments</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Medical imaging</topic><topic>Micelles</topic><topic>MRI</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Optical Imaging</topic><topic>Plasma proteins</topic><topic>Polymers</topic><topic>Probes</topic><topic>Relaxation time</topic><topic>Resonance</topic><topic>Sensitivity</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chang-Tong</creatorcontrib><creatorcontrib>Hattiholi, Aishwarya</creatorcontrib><creatorcontrib>Selvan, Subramanian Tamil</creatorcontrib><creatorcontrib>Yan, Sean Xuexian</creatorcontrib><creatorcontrib>Fang, Wei-Wei</creatorcontrib><creatorcontrib>Chandrasekharan, Prashant</creatorcontrib><creatorcontrib>Koteswaraiah, Podili</creatorcontrib><creatorcontrib>Herold, Christian J.</creatorcontrib><creatorcontrib>Gulyás, Balázs</creatorcontrib><creatorcontrib>Aw, Swee Eng</creatorcontrib><creatorcontrib>He, Tao</creatorcontrib><creatorcontrib>Ng, David Chee Eng</creatorcontrib><creatorcontrib>Padmanabhan, Parasuraman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chang-Tong</au><au>Hattiholi, Aishwarya</au><au>Selvan, Subramanian Tamil</au><au>Yan, Sean Xuexian</au><au>Fang, Wei-Wei</au><au>Chandrasekharan, Prashant</au><au>Koteswaraiah, Podili</au><au>Herold, Christian J.</au><au>Gulyás, Balázs</au><au>Aw, Swee Eng</au><au>He, Tao</au><au>Ng, David Chee Eng</au><au>Padmanabhan, Parasuraman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>110</volume><spage>15</spage><epage>36</epage><pages>15-36</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review.
The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd3+ ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32335310</pmid><doi>10.1016/j.actbio.2020.03.047</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3475-7944</orcidid><orcidid>https://orcid.org/0000-0002-1524-2374</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2020-07, Vol.110, p.15-36 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_2395258498 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Bimodality imaging probe Biocompatibility Conjugation Contrast agent Contrast agents Contrast Media Diagnostic systems Diethylenetriamine pentaacetic acid Electron spin Gadolinium Liposomes Magnetic moments Magnetic Resonance Imaging Magnetic Resonance Spectroscopy Medical imaging Micelles MRI Nanomaterials Nanoparticles Optical Imaging Plasma proteins Polymers Probes Relaxation time Resonance Sensitivity Spatial discrimination Spatial resolution |
title | Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gadolinium-based%20bimodal%20probes%20to%20enhance%20T1-Weighted%20magnetic%20resonance/optical%20imaging&rft.jtitle=Acta%20biomaterialia&rft.au=Yang,%20Chang-Tong&rft.date=2020-07-01&rft.volume=110&rft.spage=15&rft.epage=36&rft.pages=15-36&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2020.03.047&rft_dat=%3Cproquest_cross%3E2395258498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440936818&rft_id=info:pmid/32335310&rft_els_id=S1742706120301884&rfr_iscdi=true |