Loss of PYCR2 Causes Neurodegeneration by Increasing Cerebral Glycine Levels via SHMT2
Patients lacking PYCR2, a mitochondrial enzyme that synthesizes proline, display postnatal degenerative microcephaly with hypomyelination. Here we report the crystal structure of the PYCR2 apo-enzyme and show that a novel germline p.Gly249Val mutation lies at the dimer interface and lowers its enzym...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2020-07, Vol.107 (1), p.82-94.e6 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94.e6 |
---|---|
container_issue | 1 |
container_start_page | 82 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 107 |
creator | Escande-Beillard, Nathalie Loh, Abigail Saleem, Sahar N. Kanata, Kohei Hashimoto, Yui Altunoglu, Umut Metoska, Artina Grandjean, Joanes Ng, Fui Mee Pomp, Oz Baburajendran, Nithya Wong, Joyner Hill, Jeffrey Beillard, Emmanuel Cozzone, Patrick Zaki, Maha Kayserili, Hülya Hamada, Hiroshi Shiratori, Hidetaka Reversade, Bruno |
description | Patients lacking PYCR2, a mitochondrial enzyme that synthesizes proline, display postnatal degenerative microcephaly with hypomyelination. Here we report the crystal structure of the PYCR2 apo-enzyme and show that a novel germline p.Gly249Val mutation lies at the dimer interface and lowers its enzymatic activity. We find that knocking out Pycr2 in mice phenocopies the human disorder and depletes PYCR1 levels in neural lineages. In situ quantification of neurotransmitters in the brains of PYCR2 mutant mice and patients revealed a signature of encephalopathy driven by excessive cerebral glycine. Mechanistically, we demonstrate that loss of PYCR2 upregulates SHMT2, which is responsible for glycine synthesis. This hyperglycemia could be partially reversed by SHMT2 knockdown, which rescued the axonal beading and neurite lengths of cultured Pycr2 knockout neurons. Our findings identify the glycine metabolic pathway as a possible intervention point to alleviate the neurological symptoms of PYCR2-mutant patients.
[Display omitted]
•Neurodegeneration in Pycr2 KO mice phenocopies human disorder•Knockout of PYCR2 triggers loss of PYCR1 in neural lineages•Loss of PYCR2 causes excessive cerebral glycine via SHMT2 upregulation•SHMT2 inhibition lowers glycine levels and rescues Pycr2 KO neuron axonal beading
Escande-Beillard et al. establish a mouse model of PYCR2 inactivation that phenocopies human neurodegenerative disease (HLD10). Metabolomic and functional analyses in mutant mice and patients reveal that cerebral hyperglycinemia is a driver of the disease, which can be corrected by inhibiting SHMT2. |
doi_str_mv | 10.1016/j.neuron.2020.03.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2394896001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089662732030235X</els_id><sourcerecordid>2421512025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-5599c7f8ae1b02a758a2c9555f0bc605d1adb8688bc8d9b316141be1dc7781d33</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EotvCP0DIEhcuCR47TuwLEoqgrbR8CAoSJ8t2JpVXWae1Nyvtv8erLT1w4DSX531n5iHkFbAaGLTvNnXEJc2x5oyzmomacfWErIDprmpA66dkxZRuq5Z34oyc57xhDBqp4Tk5E1wI1gCsyK_1nDOdR_rtd_-d094uGTP9cmwe8BYjJrsLc6TuQK-jT2hziLe0x4Qu2YleTgcfItI17nHKdB8s_XH1-Ya_IM9GO2V8-TAvyM9PH2_6q2r99fK6_7CufCPaXSWl1r4blUVwjNtOKsu9llKOzPmWyQHs4FSrlPNq0E5ACw04hMF3nYJBiAvy9tR7l-b7BfPObEP2OE024rxkw4VuioTyeUHf_INu5iXFcp3hDQcJxaMsVHOifCpiEo7mLoWtTQcDzBy9m405eTdH74YJU7yX2OuH8sVtcXgM_RVdgPcnoGjCfcBksg8YPQ4hod-ZYQ7_3_AH07OToA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421512025</pqid></control><display><type>article</type><title>Loss of PYCR2 Causes Neurodegeneration by Increasing Cerebral Glycine Levels via SHMT2</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Escande-Beillard, Nathalie ; Loh, Abigail ; Saleem, Sahar N. ; Kanata, Kohei ; Hashimoto, Yui ; Altunoglu, Umut ; Metoska, Artina ; Grandjean, Joanes ; Ng, Fui Mee ; Pomp, Oz ; Baburajendran, Nithya ; Wong, Joyner ; Hill, Jeffrey ; Beillard, Emmanuel ; Cozzone, Patrick ; Zaki, Maha ; Kayserili, Hülya ; Hamada, Hiroshi ; Shiratori, Hidetaka ; Reversade, Bruno</creator><creatorcontrib>Escande-Beillard, Nathalie ; Loh, Abigail ; Saleem, Sahar N. ; Kanata, Kohei ; Hashimoto, Yui ; Altunoglu, Umut ; Metoska, Artina ; Grandjean, Joanes ; Ng, Fui Mee ; Pomp, Oz ; Baburajendran, Nithya ; Wong, Joyner ; Hill, Jeffrey ; Beillard, Emmanuel ; Cozzone, Patrick ; Zaki, Maha ; Kayserili, Hülya ; Hamada, Hiroshi ; Shiratori, Hidetaka ; Reversade, Bruno</creatorcontrib><description>Patients lacking PYCR2, a mitochondrial enzyme that synthesizes proline, display postnatal degenerative microcephaly with hypomyelination. Here we report the crystal structure of the PYCR2 apo-enzyme and show that a novel germline p.Gly249Val mutation lies at the dimer interface and lowers its enzymatic activity. We find that knocking out Pycr2 in mice phenocopies the human disorder and depletes PYCR1 levels in neural lineages. In situ quantification of neurotransmitters in the brains of PYCR2 mutant mice and patients revealed a signature of encephalopathy driven by excessive cerebral glycine. Mechanistically, we demonstrate that loss of PYCR2 upregulates SHMT2, which is responsible for glycine synthesis. This hyperglycemia could be partially reversed by SHMT2 knockdown, which rescued the axonal beading and neurite lengths of cultured Pycr2 knockout neurons. Our findings identify the glycine metabolic pathway as a possible intervention point to alleviate the neurological symptoms of PYCR2-mutant patients.
[Display omitted]
•Neurodegeneration in Pycr2 KO mice phenocopies human disorder•Knockout of PYCR2 triggers loss of PYCR1 in neural lineages•Loss of PYCR2 causes excessive cerebral glycine via SHMT2 upregulation•SHMT2 inhibition lowers glycine levels and rescues Pycr2 KO neuron axonal beading
Escande-Beillard et al. establish a mouse model of PYCR2 inactivation that phenocopies human neurodegenerative disease (HLD10). Metabolomic and functional analyses in mutant mice and patients reveal that cerebral hyperglycinemia is a driver of the disease, which can be corrected by inhibiting SHMT2.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2020.03.028</identifier><identifier>PMID: 32330411</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biosynthesis ; Brain ; cerebral glycine ; Crystal structure ; Defects ; Encephalopathy ; Enzymatic activity ; Enzymes ; Failure to thrive ; Families & family life ; Glycine ; HLD10 ; Hyperglycemia ; hypomyelination ; Magnetic resonance imaging ; Mammals ; Metabolic pathways ; Metabolites ; Microcephaly ; Microencephaly ; Mitochondria ; mouse models ; MRS ; Mutants ; Mutation ; Neurodegeneration ; Neurotransmitters ; Proline ; Proteins ; PYCR1 ; PYCR2 ; SHMT2</subject><ispartof>Neuron (Cambridge, Mass.), 2020-07, Vol.107 (1), p.82-94.e6</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><rights>2020. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-5599c7f8ae1b02a758a2c9555f0bc605d1adb8688bc8d9b316141be1dc7781d33</citedby><cites>FETCH-LOGICAL-c436t-5599c7f8ae1b02a758a2c9555f0bc605d1adb8688bc8d9b316141be1dc7781d33</cites><orcidid>0000-0002-4070-7997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S089662732030235X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32330411$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Escande-Beillard, Nathalie</creatorcontrib><creatorcontrib>Loh, Abigail</creatorcontrib><creatorcontrib>Saleem, Sahar N.</creatorcontrib><creatorcontrib>Kanata, Kohei</creatorcontrib><creatorcontrib>Hashimoto, Yui</creatorcontrib><creatorcontrib>Altunoglu, Umut</creatorcontrib><creatorcontrib>Metoska, Artina</creatorcontrib><creatorcontrib>Grandjean, Joanes</creatorcontrib><creatorcontrib>Ng, Fui Mee</creatorcontrib><creatorcontrib>Pomp, Oz</creatorcontrib><creatorcontrib>Baburajendran, Nithya</creatorcontrib><creatorcontrib>Wong, Joyner</creatorcontrib><creatorcontrib>Hill, Jeffrey</creatorcontrib><creatorcontrib>Beillard, Emmanuel</creatorcontrib><creatorcontrib>Cozzone, Patrick</creatorcontrib><creatorcontrib>Zaki, Maha</creatorcontrib><creatorcontrib>Kayserili, Hülya</creatorcontrib><creatorcontrib>Hamada, Hiroshi</creatorcontrib><creatorcontrib>Shiratori, Hidetaka</creatorcontrib><creatorcontrib>Reversade, Bruno</creatorcontrib><title>Loss of PYCR2 Causes Neurodegeneration by Increasing Cerebral Glycine Levels via SHMT2</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Patients lacking PYCR2, a mitochondrial enzyme that synthesizes proline, display postnatal degenerative microcephaly with hypomyelination. Here we report the crystal structure of the PYCR2 apo-enzyme and show that a novel germline p.Gly249Val mutation lies at the dimer interface and lowers its enzymatic activity. We find that knocking out Pycr2 in mice phenocopies the human disorder and depletes PYCR1 levels in neural lineages. In situ quantification of neurotransmitters in the brains of PYCR2 mutant mice and patients revealed a signature of encephalopathy driven by excessive cerebral glycine. Mechanistically, we demonstrate that loss of PYCR2 upregulates SHMT2, which is responsible for glycine synthesis. This hyperglycemia could be partially reversed by SHMT2 knockdown, which rescued the axonal beading and neurite lengths of cultured Pycr2 knockout neurons. Our findings identify the glycine metabolic pathway as a possible intervention point to alleviate the neurological symptoms of PYCR2-mutant patients.
[Display omitted]
•Neurodegeneration in Pycr2 KO mice phenocopies human disorder•Knockout of PYCR2 triggers loss of PYCR1 in neural lineages•Loss of PYCR2 causes excessive cerebral glycine via SHMT2 upregulation•SHMT2 inhibition lowers glycine levels and rescues Pycr2 KO neuron axonal beading
Escande-Beillard et al. establish a mouse model of PYCR2 inactivation that phenocopies human neurodegenerative disease (HLD10). Metabolomic and functional analyses in mutant mice and patients reveal that cerebral hyperglycinemia is a driver of the disease, which can be corrected by inhibiting SHMT2.</description><subject>Biosynthesis</subject><subject>Brain</subject><subject>cerebral glycine</subject><subject>Crystal structure</subject><subject>Defects</subject><subject>Encephalopathy</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>Failure to thrive</subject><subject>Families & family life</subject><subject>Glycine</subject><subject>HLD10</subject><subject>Hyperglycemia</subject><subject>hypomyelination</subject><subject>Magnetic resonance imaging</subject><subject>Mammals</subject><subject>Metabolic pathways</subject><subject>Metabolites</subject><subject>Microcephaly</subject><subject>Microencephaly</subject><subject>Mitochondria</subject><subject>mouse models</subject><subject>MRS</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Neurodegeneration</subject><subject>Neurotransmitters</subject><subject>Proline</subject><subject>Proteins</subject><subject>PYCR1</subject><subject>PYCR2</subject><subject>SHMT2</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhi0EotvCP0DIEhcuCR47TuwLEoqgrbR8CAoSJ8t2JpVXWae1Nyvtv8erLT1w4DSX531n5iHkFbAaGLTvNnXEJc2x5oyzmomacfWErIDprmpA66dkxZRuq5Z34oyc57xhDBqp4Tk5E1wI1gCsyK_1nDOdR_rtd_-d094uGTP9cmwe8BYjJrsLc6TuQK-jT2hziLe0x4Qu2YleTgcfItI17nHKdB8s_XH1-Ya_IM9GO2V8-TAvyM9PH2_6q2r99fK6_7CufCPaXSWl1r4blUVwjNtOKsu9llKOzPmWyQHs4FSrlPNq0E5ACw04hMF3nYJBiAvy9tR7l-b7BfPObEP2OE024rxkw4VuioTyeUHf_INu5iXFcp3hDQcJxaMsVHOifCpiEo7mLoWtTQcDzBy9m405eTdH74YJU7yX2OuH8sVtcXgM_RVdgPcnoGjCfcBksg8YPQ4hod-ZYQ7_3_AH07OToA</recordid><startdate>20200708</startdate><enddate>20200708</enddate><creator>Escande-Beillard, Nathalie</creator><creator>Loh, Abigail</creator><creator>Saleem, Sahar N.</creator><creator>Kanata, Kohei</creator><creator>Hashimoto, Yui</creator><creator>Altunoglu, Umut</creator><creator>Metoska, Artina</creator><creator>Grandjean, Joanes</creator><creator>Ng, Fui Mee</creator><creator>Pomp, Oz</creator><creator>Baburajendran, Nithya</creator><creator>Wong, Joyner</creator><creator>Hill, Jeffrey</creator><creator>Beillard, Emmanuel</creator><creator>Cozzone, Patrick</creator><creator>Zaki, Maha</creator><creator>Kayserili, Hülya</creator><creator>Hamada, Hiroshi</creator><creator>Shiratori, Hidetaka</creator><creator>Reversade, Bruno</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4070-7997</orcidid></search><sort><creationdate>20200708</creationdate><title>Loss of PYCR2 Causes Neurodegeneration by Increasing Cerebral Glycine Levels via SHMT2</title><author>Escande-Beillard, Nathalie ; Loh, Abigail ; Saleem, Sahar N. ; Kanata, Kohei ; Hashimoto, Yui ; Altunoglu, Umut ; Metoska, Artina ; Grandjean, Joanes ; Ng, Fui Mee ; Pomp, Oz ; Baburajendran, Nithya ; Wong, Joyner ; Hill, Jeffrey ; Beillard, Emmanuel ; Cozzone, Patrick ; Zaki, Maha ; Kayserili, Hülya ; Hamada, Hiroshi ; Shiratori, Hidetaka ; Reversade, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-5599c7f8ae1b02a758a2c9555f0bc605d1adb8688bc8d9b316141be1dc7781d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biosynthesis</topic><topic>Brain</topic><topic>cerebral glycine</topic><topic>Crystal structure</topic><topic>Defects</topic><topic>Encephalopathy</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>Failure to thrive</topic><topic>Families & family life</topic><topic>Glycine</topic><topic>HLD10</topic><topic>Hyperglycemia</topic><topic>hypomyelination</topic><topic>Magnetic resonance imaging</topic><topic>Mammals</topic><topic>Metabolic pathways</topic><topic>Metabolites</topic><topic>Microcephaly</topic><topic>Microencephaly</topic><topic>Mitochondria</topic><topic>mouse models</topic><topic>MRS</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Neurodegeneration</topic><topic>Neurotransmitters</topic><topic>Proline</topic><topic>Proteins</topic><topic>PYCR1</topic><topic>PYCR2</topic><topic>SHMT2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escande-Beillard, Nathalie</creatorcontrib><creatorcontrib>Loh, Abigail</creatorcontrib><creatorcontrib>Saleem, Sahar N.</creatorcontrib><creatorcontrib>Kanata, Kohei</creatorcontrib><creatorcontrib>Hashimoto, Yui</creatorcontrib><creatorcontrib>Altunoglu, Umut</creatorcontrib><creatorcontrib>Metoska, Artina</creatorcontrib><creatorcontrib>Grandjean, Joanes</creatorcontrib><creatorcontrib>Ng, Fui Mee</creatorcontrib><creatorcontrib>Pomp, Oz</creatorcontrib><creatorcontrib>Baburajendran, Nithya</creatorcontrib><creatorcontrib>Wong, Joyner</creatorcontrib><creatorcontrib>Hill, Jeffrey</creatorcontrib><creatorcontrib>Beillard, Emmanuel</creatorcontrib><creatorcontrib>Cozzone, Patrick</creatorcontrib><creatorcontrib>Zaki, Maha</creatorcontrib><creatorcontrib>Kayserili, Hülya</creatorcontrib><creatorcontrib>Hamada, Hiroshi</creatorcontrib><creatorcontrib>Shiratori, Hidetaka</creatorcontrib><creatorcontrib>Reversade, Bruno</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escande-Beillard, Nathalie</au><au>Loh, Abigail</au><au>Saleem, Sahar N.</au><au>Kanata, Kohei</au><au>Hashimoto, Yui</au><au>Altunoglu, Umut</au><au>Metoska, Artina</au><au>Grandjean, Joanes</au><au>Ng, Fui Mee</au><au>Pomp, Oz</au><au>Baburajendran, Nithya</au><au>Wong, Joyner</au><au>Hill, Jeffrey</au><au>Beillard, Emmanuel</au><au>Cozzone, Patrick</au><au>Zaki, Maha</au><au>Kayserili, Hülya</au><au>Hamada, Hiroshi</au><au>Shiratori, Hidetaka</au><au>Reversade, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of PYCR2 Causes Neurodegeneration by Increasing Cerebral Glycine Levels via SHMT2</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2020-07-08</date><risdate>2020</risdate><volume>107</volume><issue>1</issue><spage>82</spage><epage>94.e6</epage><pages>82-94.e6</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Patients lacking PYCR2, a mitochondrial enzyme that synthesizes proline, display postnatal degenerative microcephaly with hypomyelination. Here we report the crystal structure of the PYCR2 apo-enzyme and show that a novel germline p.Gly249Val mutation lies at the dimer interface and lowers its enzymatic activity. We find that knocking out Pycr2 in mice phenocopies the human disorder and depletes PYCR1 levels in neural lineages. In situ quantification of neurotransmitters in the brains of PYCR2 mutant mice and patients revealed a signature of encephalopathy driven by excessive cerebral glycine. Mechanistically, we demonstrate that loss of PYCR2 upregulates SHMT2, which is responsible for glycine synthesis. This hyperglycemia could be partially reversed by SHMT2 knockdown, which rescued the axonal beading and neurite lengths of cultured Pycr2 knockout neurons. Our findings identify the glycine metabolic pathway as a possible intervention point to alleviate the neurological symptoms of PYCR2-mutant patients.
[Display omitted]
•Neurodegeneration in Pycr2 KO mice phenocopies human disorder•Knockout of PYCR2 triggers loss of PYCR1 in neural lineages•Loss of PYCR2 causes excessive cerebral glycine via SHMT2 upregulation•SHMT2 inhibition lowers glycine levels and rescues Pycr2 KO neuron axonal beading
Escande-Beillard et al. establish a mouse model of PYCR2 inactivation that phenocopies human neurodegenerative disease (HLD10). Metabolomic and functional analyses in mutant mice and patients reveal that cerebral hyperglycinemia is a driver of the disease, which can be corrected by inhibiting SHMT2.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32330411</pmid><doi>10.1016/j.neuron.2020.03.028</doi><orcidid>https://orcid.org/0000-0002-4070-7997</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2020-07, Vol.107 (1), p.82-94.e6 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_2394896001 |
source | Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Biosynthesis Brain cerebral glycine Crystal structure Defects Encephalopathy Enzymatic activity Enzymes Failure to thrive Families & family life Glycine HLD10 Hyperglycemia hypomyelination Magnetic resonance imaging Mammals Metabolic pathways Metabolites Microcephaly Microencephaly Mitochondria mouse models MRS Mutants Mutation Neurodegeneration Neurotransmitters Proline Proteins PYCR1 PYCR2 SHMT2 |
title | Loss of PYCR2 Causes Neurodegeneration by Increasing Cerebral Glycine Levels via SHMT2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20PYCR2%20Causes%20Neurodegeneration%20by%20Increasing%20Cerebral%20Glycine%20Levels%20via%20SHMT2&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Escande-Beillard,%20Nathalie&rft.date=2020-07-08&rft.volume=107&rft.issue=1&rft.spage=82&rft.epage=94.e6&rft.pages=82-94.e6&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2020.03.028&rft_dat=%3Cproquest_cross%3E2421512025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421512025&rft_id=info:pmid/32330411&rft_els_id=S089662732030235X&rfr_iscdi=true |