Rapid lipidomic profiling based on ultra-high performance liquid chromatography–mass spectrometry and its application in diabetic retinopathy
Lipidomics aims to characterize lipid alteration in response to internal or external subtle perturbations in complex biological samples. Lipid abnormality is a major risk factor for many diseases. Large-scale lipidomic studies may offer new insights into the pathophysiological mechanisms of diseases...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2020-06, Vol.412 (15), p.3585-3594 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3594 |
---|---|
container_issue | 15 |
container_start_page | 3585 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 412 |
creator | Xuan, Qiuhui Zheng, Fujian Yu, Di Ouyang, Yang Zhao, Xinjie Hu, Chunxiu Xu, Guowang |
description | Lipidomics aims to characterize lipid alteration in response to internal or external subtle perturbations in complex biological samples. Lipid abnormality is a major risk factor for many diseases. Large-scale lipidomic studies may offer new insights into the pathophysiological mechanisms of diseases, new opportunities in systems biology, functional biology, and personalized medicine. To this end, a highly efficient and stable lipidomic method is highly in demand. We herein present a rapid and relatively high coverage lipidomic profiling approach based on ultra-high performance liquid chromatography–mass spectrometry by comparing the performance of different chromatographic columns, optimizing the elution gradient and selecting an appropriate data acquisition mode of mass spectra. As a result, a total of 481 lipids were detected from 40 μL serum sample within 13 min, covering 20 common lipid (sub)classes. The developed method was well validated with satisfactory analytical characteristics in linearity, repeatability, stability, and lipid coverage. To show the usefulness, the method was employed to investigate serum lipid profiling of 43 subjects with mild diabetic retinopathy and 44 normal controls, and successfully defined the differential lipids related to diabetic retinopathy. We believe that this rapid method will be beneficial for lipidomic analysis of large-scale clinical samples. |
doi_str_mv | 10.1007/s00216-020-02632-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2394881494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A623827823</galeid><sourcerecordid>A623827823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-5d4cd36449fbb23da75ccec4a6be14a2701d1ed856db231285a8205d5219fd793</originalsourceid><addsrcrecordid>eNp9Ustu1TAQjRCIlsIPsECW2LBJsceOk7usKl5SJSQEa8uxJ4mrxE5tZ3F3_AEL_pAvwZdbWoEQsjy2NOccz4xPVT1n9JxR2r5OlAKTNQVatuRQywfVKZOsq0E29OHdXcBJ9SSla0pZ0zH5uDrhwDmnrTytvn3Sq7NkdiWGxRmyxjC42fmR9DqhJcGTbc5R15MbJ7JiHEJctDdYODdboZophkXnMEa9TvsfX78vOiWSVjS5JDDHPdHeEpcT0es6O6OzK6LOE-t0j7m8GUv0YdV52j-tHg16Tvjs9jyrvrx98_nyfX318d2Hy4ur2jTAc91YYSyXQuyGvgduddsYg0Zo2SMTGlrKLEPbNdKWNIOu0R3QxjbAdoNtd_ysenXULf3ebJiyWlwyOM_aY9iSAr4TXcfEThToy7-g12GLvlSnQFAA0QrK71GjnlE5P4QyNHMQVRcSeAdtBwfU-T9QZVksww8ey-zxTwIcCSaGlCIOao1u0XGvGFUHF6ijC1RxgfrlAiUL6cVtxVu_oL2j_P72AuBHQCopP2K8b-k_sj8B6qu_aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402247403</pqid></control><display><type>article</type><title>Rapid lipidomic profiling based on ultra-high performance liquid chromatography–mass spectrometry and its application in diabetic retinopathy</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Xuan, Qiuhui ; Zheng, Fujian ; Yu, Di ; Ouyang, Yang ; Zhao, Xinjie ; Hu, Chunxiu ; Xu, Guowang</creator><creatorcontrib>Xuan, Qiuhui ; Zheng, Fujian ; Yu, Di ; Ouyang, Yang ; Zhao, Xinjie ; Hu, Chunxiu ; Xu, Guowang</creatorcontrib><description>Lipidomics aims to characterize lipid alteration in response to internal or external subtle perturbations in complex biological samples. Lipid abnormality is a major risk factor for many diseases. Large-scale lipidomic studies may offer new insights into the pathophysiological mechanisms of diseases, new opportunities in systems biology, functional biology, and personalized medicine. To this end, a highly efficient and stable lipidomic method is highly in demand. We herein present a rapid and relatively high coverage lipidomic profiling approach based on ultra-high performance liquid chromatography–mass spectrometry by comparing the performance of different chromatographic columns, optimizing the elution gradient and selecting an appropriate data acquisition mode of mass spectra. As a result, a total of 481 lipids were detected from 40 μL serum sample within 13 min, covering 20 common lipid (sub)classes. The developed method was well validated with satisfactory analytical characteristics in linearity, repeatability, stability, and lipid coverage. To show the usefulness, the method was employed to investigate serum lipid profiling of 43 subjects with mild diabetic retinopathy and 44 normal controls, and successfully defined the differential lipids related to diabetic retinopathy. We believe that this rapid method will be beneficial for lipidomic analysis of large-scale clinical samples.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-020-02632-6</identifier><identifier>PMID: 32333076</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Biochemistry ; Biological properties ; Biological samples ; Biology ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Chromatography ; Chromatography, High Pressure Liquid - economics ; Chromatography, High Pressure Liquid - methods ; Current Progress in Lipidomics ; Data acquisition ; Diabetes ; Diabetes mellitus ; Diabetic retinopathy ; Diabetic Retinopathy - blood ; Elution ; Female ; Food Science ; High performance liquid chromatography ; Humans ; Laboratory Medicine ; Limit of Detection ; Linearity ; Lipidomics - economics ; Lipidomics - methods ; Lipids ; Lipids - analysis ; Lipids - blood ; Liquid chromatography ; Male ; Mass spectra ; Mass spectrometry ; Mass Spectrometry - economics ; Mass Spectrometry - methods ; Mass spectroscopy ; Medical research ; Medicine, Experimental ; Middle Aged ; Monitoring/Environmental Analysis ; Precision medicine ; Research Paper ; Retinopathy ; Risk analysis ; Risk factors ; Scientific imaging ; Spectroscopy ; Stability analysis ; Time Factors</subject><ispartof>Analytical and bioanalytical chemistry, 2020-06, Vol.412 (15), p.3585-3594</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-5d4cd36449fbb23da75ccec4a6be14a2701d1ed856db231285a8205d5219fd793</citedby><cites>FETCH-LOGICAL-c523t-5d4cd36449fbb23da75ccec4a6be14a2701d1ed856db231285a8205d5219fd793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-020-02632-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-020-02632-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32333076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xuan, Qiuhui</creatorcontrib><creatorcontrib>Zheng, Fujian</creatorcontrib><creatorcontrib>Yu, Di</creatorcontrib><creatorcontrib>Ouyang, Yang</creatorcontrib><creatorcontrib>Zhao, Xinjie</creatorcontrib><creatorcontrib>Hu, Chunxiu</creatorcontrib><creatorcontrib>Xu, Guowang</creatorcontrib><title>Rapid lipidomic profiling based on ultra-high performance liquid chromatography–mass spectrometry and its application in diabetic retinopathy</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Lipidomics aims to characterize lipid alteration in response to internal or external subtle perturbations in complex biological samples. Lipid abnormality is a major risk factor for many diseases. Large-scale lipidomic studies may offer new insights into the pathophysiological mechanisms of diseases, new opportunities in systems biology, functional biology, and personalized medicine. To this end, a highly efficient and stable lipidomic method is highly in demand. We herein present a rapid and relatively high coverage lipidomic profiling approach based on ultra-high performance liquid chromatography–mass spectrometry by comparing the performance of different chromatographic columns, optimizing the elution gradient and selecting an appropriate data acquisition mode of mass spectra. As a result, a total of 481 lipids were detected from 40 μL serum sample within 13 min, covering 20 common lipid (sub)classes. The developed method was well validated with satisfactory analytical characteristics in linearity, repeatability, stability, and lipid coverage. To show the usefulness, the method was employed to investigate serum lipid profiling of 43 subjects with mild diabetic retinopathy and 44 normal controls, and successfully defined the differential lipids related to diabetic retinopathy. We believe that this rapid method will be beneficial for lipidomic analysis of large-scale clinical samples.</description><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Biological properties</subject><subject>Biological samples</subject><subject>Biology</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography</subject><subject>Chromatography, High Pressure Liquid - economics</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Current Progress in Lipidomics</subject><subject>Data acquisition</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetic retinopathy</subject><subject>Diabetic Retinopathy - blood</subject><subject>Elution</subject><subject>Female</subject><subject>Food Science</subject><subject>High performance liquid chromatography</subject><subject>Humans</subject><subject>Laboratory Medicine</subject><subject>Limit of Detection</subject><subject>Linearity</subject><subject>Lipidomics - economics</subject><subject>Lipidomics - methods</subject><subject>Lipids</subject><subject>Lipids - analysis</subject><subject>Lipids - blood</subject><subject>Liquid chromatography</subject><subject>Male</subject><subject>Mass spectra</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - economics</subject><subject>Mass Spectrometry - methods</subject><subject>Mass spectroscopy</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Middle Aged</subject><subject>Monitoring/Environmental Analysis</subject><subject>Precision medicine</subject><subject>Research Paper</subject><subject>Retinopathy</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Scientific imaging</subject><subject>Spectroscopy</subject><subject>Stability analysis</subject><subject>Time Factors</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9Ustu1TAQjRCIlsIPsECW2LBJsceOk7usKl5SJSQEa8uxJ4mrxE5tZ3F3_AEL_pAvwZdbWoEQsjy2NOccz4xPVT1n9JxR2r5OlAKTNQVatuRQywfVKZOsq0E29OHdXcBJ9SSla0pZ0zH5uDrhwDmnrTytvn3Sq7NkdiWGxRmyxjC42fmR9DqhJcGTbc5R15MbJ7JiHEJctDdYODdboZophkXnMEa9TvsfX78vOiWSVjS5JDDHPdHeEpcT0es6O6OzK6LOE-t0j7m8GUv0YdV52j-tHg16Tvjs9jyrvrx98_nyfX318d2Hy4ur2jTAc91YYSyXQuyGvgduddsYg0Zo2SMTGlrKLEPbNdKWNIOu0R3QxjbAdoNtd_ysenXULf3ebJiyWlwyOM_aY9iSAr4TXcfEThToy7-g12GLvlSnQFAA0QrK71GjnlE5P4QyNHMQVRcSeAdtBwfU-T9QZVksww8ey-zxTwIcCSaGlCIOao1u0XGvGFUHF6ijC1RxgfrlAiUL6cVtxVu_oL2j_P72AuBHQCopP2K8b-k_sj8B6qu_aA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Xuan, Qiuhui</creator><creator>Zheng, Fujian</creator><creator>Yu, Di</creator><creator>Ouyang, Yang</creator><creator>Zhao, Xinjie</creator><creator>Hu, Chunxiu</creator><creator>Xu, Guowang</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20200601</creationdate><title>Rapid lipidomic profiling based on ultra-high performance liquid chromatography–mass spectrometry and its application in diabetic retinopathy</title><author>Xuan, Qiuhui ; Zheng, Fujian ; Yu, Di ; Ouyang, Yang ; Zhao, Xinjie ; Hu, Chunxiu ; Xu, Guowang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-5d4cd36449fbb23da75ccec4a6be14a2701d1ed856db231285a8205d5219fd793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Biological properties</topic><topic>Biological samples</topic><topic>Biology</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography</topic><topic>Chromatography, High Pressure Liquid - economics</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Current Progress in Lipidomics</topic><topic>Data acquisition</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetic retinopathy</topic><topic>Diabetic Retinopathy - blood</topic><topic>Elution</topic><topic>Female</topic><topic>Food Science</topic><topic>High performance liquid chromatography</topic><topic>Humans</topic><topic>Laboratory Medicine</topic><topic>Limit of Detection</topic><topic>Linearity</topic><topic>Lipidomics - economics</topic><topic>Lipidomics - methods</topic><topic>Lipids</topic><topic>Lipids - analysis</topic><topic>Lipids - blood</topic><topic>Liquid chromatography</topic><topic>Male</topic><topic>Mass spectra</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - economics</topic><topic>Mass Spectrometry - methods</topic><topic>Mass spectroscopy</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Middle Aged</topic><topic>Monitoring/Environmental Analysis</topic><topic>Precision medicine</topic><topic>Research Paper</topic><topic>Retinopathy</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Scientific imaging</topic><topic>Spectroscopy</topic><topic>Stability analysis</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xuan, Qiuhui</creatorcontrib><creatorcontrib>Zheng, Fujian</creatorcontrib><creatorcontrib>Yu, Di</creatorcontrib><creatorcontrib>Ouyang, Yang</creatorcontrib><creatorcontrib>Zhao, Xinjie</creatorcontrib><creatorcontrib>Hu, Chunxiu</creatorcontrib><creatorcontrib>Xu, Guowang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xuan, Qiuhui</au><au>Zheng, Fujian</au><au>Yu, Di</au><au>Ouyang, Yang</au><au>Zhao, Xinjie</au><au>Hu, Chunxiu</au><au>Xu, Guowang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid lipidomic profiling based on ultra-high performance liquid chromatography–mass spectrometry and its application in diabetic retinopathy</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>412</volume><issue>15</issue><spage>3585</spage><epage>3594</epage><pages>3585-3594</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Lipidomics aims to characterize lipid alteration in response to internal or external subtle perturbations in complex biological samples. Lipid abnormality is a major risk factor for many diseases. Large-scale lipidomic studies may offer new insights into the pathophysiological mechanisms of diseases, new opportunities in systems biology, functional biology, and personalized medicine. To this end, a highly efficient and stable lipidomic method is highly in demand. We herein present a rapid and relatively high coverage lipidomic profiling approach based on ultra-high performance liquid chromatography–mass spectrometry by comparing the performance of different chromatographic columns, optimizing the elution gradient and selecting an appropriate data acquisition mode of mass spectra. As a result, a total of 481 lipids were detected from 40 μL serum sample within 13 min, covering 20 common lipid (sub)classes. The developed method was well validated with satisfactory analytical characteristics in linearity, repeatability, stability, and lipid coverage. To show the usefulness, the method was employed to investigate serum lipid profiling of 43 subjects with mild diabetic retinopathy and 44 normal controls, and successfully defined the differential lipids related to diabetic retinopathy. We believe that this rapid method will be beneficial for lipidomic analysis of large-scale clinical samples.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32333076</pmid><doi>10.1007/s00216-020-02632-6</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2020-06, Vol.412 (15), p.3585-3594 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_proquest_miscellaneous_2394881494 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Analytical Chemistry Biochemistry Biological properties Biological samples Biology Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Chromatography Chromatography, High Pressure Liquid - economics Chromatography, High Pressure Liquid - methods Current Progress in Lipidomics Data acquisition Diabetes Diabetes mellitus Diabetic retinopathy Diabetic Retinopathy - blood Elution Female Food Science High performance liquid chromatography Humans Laboratory Medicine Limit of Detection Linearity Lipidomics - economics Lipidomics - methods Lipids Lipids - analysis Lipids - blood Liquid chromatography Male Mass spectra Mass spectrometry Mass Spectrometry - economics Mass Spectrometry - methods Mass spectroscopy Medical research Medicine, Experimental Middle Aged Monitoring/Environmental Analysis Precision medicine Research Paper Retinopathy Risk analysis Risk factors Scientific imaging Spectroscopy Stability analysis Time Factors |
title | Rapid lipidomic profiling based on ultra-high performance liquid chromatography–mass spectrometry and its application in diabetic retinopathy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20lipidomic%20profiling%20based%20on%20ultra-high%20performance%20liquid%20chromatography%E2%80%93mass%20spectrometry%20and%20its%20application%20in%20diabetic%20retinopathy&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Xuan,%20Qiuhui&rft.date=2020-06-01&rft.volume=412&rft.issue=15&rft.spage=3585&rft.epage=3594&rft.pages=3585-3594&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-020-02632-6&rft_dat=%3Cgale_proqu%3EA623827823%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2402247403&rft_id=info:pmid/32333076&rft_galeid=A623827823&rfr_iscdi=true |