Strongly correlated electrons and hybrid excitons in a moiré heterostructure
Two-dimensional materials and their heterostructures constitute a promising platform to study correlated electronic states, as well as the many-body physics of excitons. Transport measurements on twisted graphene bilayers have revealed a plethora of intertwined electronic phases, including Mott insu...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2020-04, Vol.580 (7804), p.472-477 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 477 |
---|---|
container_issue | 7804 |
container_start_page | 472 |
container_title | Nature (London) |
container_volume | 580 |
creator | Shimazaki, Yuya Schwartz, Ido Watanabe, Kenji Taniguchi, Takashi Kroner, Martin Imamoğlu, Ataç |
description | Two-dimensional materials and their heterostructures constitute a promising platform to study correlated electronic states, as well as the many-body physics of excitons. Transport measurements on twisted graphene bilayers have revealed a plethora of intertwined electronic phases, including Mott insulators, strange metals and superconductors
1
–
5
. However, signatures of such strong electronic correlations in optical spectroscopy have hitherto remained unexplored. Here we present experiments showing how excitons that are dynamically screened by itinerant electrons to form exciton-polarons
6
,
7
can be used as a spectroscopic tool to investigate interaction-induced incompressible states of electrons. We study a molybdenum diselenide/hexagonal boron nitride/molybdenum diselenide heterostructure that exhibits a long-period moiré superlattice, as evidenced by coherent hole-tunnelling-mediated avoided crossings of an intralayer exciton with three interlayer exciton resonances separated by about five millielectronvolts. For electron densities corresponding to half-filling of the lowest moiré subband, we observe strong layer pseudospin paramagnetism, demonstrated by an abrupt transfer of all the (roughly 1,500) electrons from one molybdenum diselenide layer to the other on application of a small perpendicular electric field. Remarkably, the electronic state at half-filling of each molybdenum diselenide layer is resilient towards charge redistribution by the applied electric field, demonstrating an incompressible Mott-like state of electrons. Our experiments demonstrate that optical spectroscopy provides a powerful tool for investigating strongly correlated electron physics in the bulk and paves the way for investigating Bose–Fermi mixtures of degenerate electrons and dipolar excitons.
Optical spectroscopy is used to probe correlated electronic states in a moiré heterostructure, showing many-body effects such as strong layer paramagnetism and an incompressible Mott-like state of electrons. |
doi_str_mv | 10.1038/s41586-020-2191-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2394243577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A621714670</galeid><sourcerecordid>A621714670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-fa424d97537396ea7e90e4b791062cb6087e3c9d9373f2d3a8970ebeade798f73</originalsourceid><addsrcrecordid>eNp10t1qFDEUB_Agil1XH8AbGfRGkan5mmRyuSx-FKqCrXgZMpkz05T52CYZ6D5Sn6MvZoat1pUtuQic_HISkj9CLwk-JpiVHwInRSlyTHFOiSI5fYQWhEuRc1HKx2iBMS1zXDJxhJ6FcIkxLojkT9ERo4xSLPgCfT2LfhzabpvZ0XvoTIQ6gw7sXA6ZGersYlt5l4rX1sW55obMZP3o_O1NdgER_Biin2ycPDxHTxrTBXhxNy_Rz08fz9df8tPvn0_Wq9PcFpLHvDGc8lrJgkmmBBgJCgOvpCJYUFsJXEpgVtUqrTe0ZqZUEkMFpgapykayJXq767vx49UEIereBQtdZwYYp6ApU-kEVsiZvvmPXo6TH9LtZiUYUQXj96o1HWg3NGP0xs5N9UpQIgkXEieVH1AtDOBNNw7QuFTe868PeLtxV_pfdHwApVFD7-zBru_2NiQT4Tq2ZgpBn5z92LfvH7ar81_rb_ua7LRNfxo8NHrjXW_8VhOs58TpXeJ0SpyeE5eecIle3b3vVPVQ_93xJ2IJ0B0IaWlowd9_wMNdfwNcANvF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396319534</pqid></control><display><type>article</type><title>Strongly correlated electrons and hybrid excitons in a moiré heterostructure</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Shimazaki, Yuya ; Schwartz, Ido ; Watanabe, Kenji ; Taniguchi, Takashi ; Kroner, Martin ; Imamoğlu, Ataç</creator><creatorcontrib>Shimazaki, Yuya ; Schwartz, Ido ; Watanabe, Kenji ; Taniguchi, Takashi ; Kroner, Martin ; Imamoğlu, Ataç</creatorcontrib><description>Two-dimensional materials and their heterostructures constitute a promising platform to study correlated electronic states, as well as the many-body physics of excitons. Transport measurements on twisted graphene bilayers have revealed a plethora of intertwined electronic phases, including Mott insulators, strange metals and superconductors
1
–
5
. However, signatures of such strong electronic correlations in optical spectroscopy have hitherto remained unexplored. Here we present experiments showing how excitons that are dynamically screened by itinerant electrons to form exciton-polarons
6
,
7
can be used as a spectroscopic tool to investigate interaction-induced incompressible states of electrons. We study a molybdenum diselenide/hexagonal boron nitride/molybdenum diselenide heterostructure that exhibits a long-period moiré superlattice, as evidenced by coherent hole-tunnelling-mediated avoided crossings of an intralayer exciton with three interlayer exciton resonances separated by about five millielectronvolts. For electron densities corresponding to half-filling of the lowest moiré subband, we observe strong layer pseudospin paramagnetism, demonstrated by an abrupt transfer of all the (roughly 1,500) electrons from one molybdenum diselenide layer to the other on application of a small perpendicular electric field. Remarkably, the electronic state at half-filling of each molybdenum diselenide layer is resilient towards charge redistribution by the applied electric field, demonstrating an incompressible Mott-like state of electrons. Our experiments demonstrate that optical spectroscopy provides a powerful tool for investigating strongly correlated electron physics in the bulk and paves the way for investigating Bose–Fermi mixtures of degenerate electrons and dipolar excitons.
Optical spectroscopy is used to probe correlated electronic states in a moiré heterostructure, showing many-body effects such as strong layer paramagnetism and an incompressible Mott-like state of electrons.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2191-2</identifier><identifier>PMID: 32322064</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/766/119/995 ; 639/925/357/1018 ; Analysis ; Bilayers ; Boron ; Boron nitride ; Correlation analysis ; Design and construction ; Electric fields ; Electron density ; Electron states ; Electrons ; Energy ; Exciton theory ; Excitons ; Experiments ; Graphene ; Heavy metals ; Heterostructures ; Humanities and Social Sciences ; Hybridization ; Insulators ; Interlayers ; Moire method ; Molybdenum ; Molybdenum compounds ; multidisciplinary ; Paramagnetism ; Physics ; Science ; Science (multidisciplinary) ; Semiconductors ; Spectroscopy ; Spectrum analysis ; Superlattices ; Two dimensional materials</subject><ispartof>Nature (London), 2020-04, Vol.580 (7804), p.472-477</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 23, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-fa424d97537396ea7e90e4b791062cb6087e3c9d9373f2d3a8970ebeade798f73</citedby><cites>FETCH-LOGICAL-c574t-fa424d97537396ea7e90e4b791062cb6087e3c9d9373f2d3a8970ebeade798f73</cites><orcidid>0000-0002-0641-1631 ; 0000-0002-1360-5688 ; 0000-0003-3701-8119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32322064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shimazaki, Yuya</creatorcontrib><creatorcontrib>Schwartz, Ido</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Kroner, Martin</creatorcontrib><creatorcontrib>Imamoğlu, Ataç</creatorcontrib><title>Strongly correlated electrons and hybrid excitons in a moiré heterostructure</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Two-dimensional materials and their heterostructures constitute a promising platform to study correlated electronic states, as well as the many-body physics of excitons. Transport measurements on twisted graphene bilayers have revealed a plethora of intertwined electronic phases, including Mott insulators, strange metals and superconductors
1
–
5
. However, signatures of such strong electronic correlations in optical spectroscopy have hitherto remained unexplored. Here we present experiments showing how excitons that are dynamically screened by itinerant electrons to form exciton-polarons
6
,
7
can be used as a spectroscopic tool to investigate interaction-induced incompressible states of electrons. We study a molybdenum diselenide/hexagonal boron nitride/molybdenum diselenide heterostructure that exhibits a long-period moiré superlattice, as evidenced by coherent hole-tunnelling-mediated avoided crossings of an intralayer exciton with three interlayer exciton resonances separated by about five millielectronvolts. For electron densities corresponding to half-filling of the lowest moiré subband, we observe strong layer pseudospin paramagnetism, demonstrated by an abrupt transfer of all the (roughly 1,500) electrons from one molybdenum diselenide layer to the other on application of a small perpendicular electric field. Remarkably, the electronic state at half-filling of each molybdenum diselenide layer is resilient towards charge redistribution by the applied electric field, demonstrating an incompressible Mott-like state of electrons. Our experiments demonstrate that optical spectroscopy provides a powerful tool for investigating strongly correlated electron physics in the bulk and paves the way for investigating Bose–Fermi mixtures of degenerate electrons and dipolar excitons.
Optical spectroscopy is used to probe correlated electronic states in a moiré heterostructure, showing many-body effects such as strong layer paramagnetism and an incompressible Mott-like state of electrons.</description><subject>142/126</subject><subject>639/766/119/995</subject><subject>639/925/357/1018</subject><subject>Analysis</subject><subject>Bilayers</subject><subject>Boron</subject><subject>Boron nitride</subject><subject>Correlation analysis</subject><subject>Design and construction</subject><subject>Electric fields</subject><subject>Electron density</subject><subject>Electron states</subject><subject>Electrons</subject><subject>Energy</subject><subject>Exciton theory</subject><subject>Excitons</subject><subject>Experiments</subject><subject>Graphene</subject><subject>Heavy metals</subject><subject>Heterostructures</subject><subject>Humanities and Social Sciences</subject><subject>Hybridization</subject><subject>Insulators</subject><subject>Interlayers</subject><subject>Moire method</subject><subject>Molybdenum</subject><subject>Molybdenum compounds</subject><subject>multidisciplinary</subject><subject>Paramagnetism</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductors</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Superlattices</subject><subject>Two dimensional materials</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10t1qFDEUB_Agil1XH8AbGfRGkan5mmRyuSx-FKqCrXgZMpkz05T52CYZ6D5Sn6MvZoat1pUtuQic_HISkj9CLwk-JpiVHwInRSlyTHFOiSI5fYQWhEuRc1HKx2iBMS1zXDJxhJ6FcIkxLojkT9ERo4xSLPgCfT2LfhzabpvZ0XvoTIQ6gw7sXA6ZGersYlt5l4rX1sW55obMZP3o_O1NdgER_Biin2ycPDxHTxrTBXhxNy_Rz08fz9df8tPvn0_Wq9PcFpLHvDGc8lrJgkmmBBgJCgOvpCJYUFsJXEpgVtUqrTe0ZqZUEkMFpgapykayJXq767vx49UEIereBQtdZwYYp6ApU-kEVsiZvvmPXo6TH9LtZiUYUQXj96o1HWg3NGP0xs5N9UpQIgkXEieVH1AtDOBNNw7QuFTe868PeLtxV_pfdHwApVFD7-zBru_2NiQT4Tq2ZgpBn5z92LfvH7ar81_rb_ua7LRNfxo8NHrjXW_8VhOs58TpXeJ0SpyeE5eecIle3b3vVPVQ_93xJ2IJ0B0IaWlowd9_wMNdfwNcANvF</recordid><startdate>20200423</startdate><enddate>20200423</enddate><creator>Shimazaki, Yuya</creator><creator>Schwartz, Ido</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Kroner, Martin</creator><creator>Imamoğlu, Ataç</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0641-1631</orcidid><orcidid>https://orcid.org/0000-0002-1360-5688</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid></search><sort><creationdate>20200423</creationdate><title>Strongly correlated electrons and hybrid excitons in a moiré heterostructure</title><author>Shimazaki, Yuya ; Schwartz, Ido ; Watanabe, Kenji ; Taniguchi, Takashi ; Kroner, Martin ; Imamoğlu, Ataç</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-fa424d97537396ea7e90e4b791062cb6087e3c9d9373f2d3a8970ebeade798f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>142/126</topic><topic>639/766/119/995</topic><topic>639/925/357/1018</topic><topic>Analysis</topic><topic>Bilayers</topic><topic>Boron</topic><topic>Boron nitride</topic><topic>Correlation analysis</topic><topic>Design and construction</topic><topic>Electric fields</topic><topic>Electron density</topic><topic>Electron states</topic><topic>Electrons</topic><topic>Energy</topic><topic>Exciton theory</topic><topic>Excitons</topic><topic>Experiments</topic><topic>Graphene</topic><topic>Heavy metals</topic><topic>Heterostructures</topic><topic>Humanities and Social Sciences</topic><topic>Hybridization</topic><topic>Insulators</topic><topic>Interlayers</topic><topic>Moire method</topic><topic>Molybdenum</topic><topic>Molybdenum compounds</topic><topic>multidisciplinary</topic><topic>Paramagnetism</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductors</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Superlattices</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimazaki, Yuya</creatorcontrib><creatorcontrib>Schwartz, Ido</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Kroner, Martin</creatorcontrib><creatorcontrib>Imamoğlu, Ataç</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimazaki, Yuya</au><au>Schwartz, Ido</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Kroner, Martin</au><au>Imamoğlu, Ataç</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strongly correlated electrons and hybrid excitons in a moiré heterostructure</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-04-23</date><risdate>2020</risdate><volume>580</volume><issue>7804</issue><spage>472</spage><epage>477</epage><pages>472-477</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Two-dimensional materials and their heterostructures constitute a promising platform to study correlated electronic states, as well as the many-body physics of excitons. Transport measurements on twisted graphene bilayers have revealed a plethora of intertwined electronic phases, including Mott insulators, strange metals and superconductors
1
–
5
. However, signatures of such strong electronic correlations in optical spectroscopy have hitherto remained unexplored. Here we present experiments showing how excitons that are dynamically screened by itinerant electrons to form exciton-polarons
6
,
7
can be used as a spectroscopic tool to investigate interaction-induced incompressible states of electrons. We study a molybdenum diselenide/hexagonal boron nitride/molybdenum diselenide heterostructure that exhibits a long-period moiré superlattice, as evidenced by coherent hole-tunnelling-mediated avoided crossings of an intralayer exciton with three interlayer exciton resonances separated by about five millielectronvolts. For electron densities corresponding to half-filling of the lowest moiré subband, we observe strong layer pseudospin paramagnetism, demonstrated by an abrupt transfer of all the (roughly 1,500) electrons from one molybdenum diselenide layer to the other on application of a small perpendicular electric field. Remarkably, the electronic state at half-filling of each molybdenum diselenide layer is resilient towards charge redistribution by the applied electric field, demonstrating an incompressible Mott-like state of electrons. Our experiments demonstrate that optical spectroscopy provides a powerful tool for investigating strongly correlated electron physics in the bulk and paves the way for investigating Bose–Fermi mixtures of degenerate electrons and dipolar excitons.
Optical spectroscopy is used to probe correlated electronic states in a moiré heterostructure, showing many-body effects such as strong layer paramagnetism and an incompressible Mott-like state of electrons.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32322064</pmid><doi>10.1038/s41586-020-2191-2</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0641-1631</orcidid><orcidid>https://orcid.org/0000-0002-1360-5688</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2020-04, Vol.580 (7804), p.472-477 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2394243577 |
source | Nature; Alma/SFX Local Collection |
subjects | 142/126 639/766/119/995 639/925/357/1018 Analysis Bilayers Boron Boron nitride Correlation analysis Design and construction Electric fields Electron density Electron states Electrons Energy Exciton theory Excitons Experiments Graphene Heavy metals Heterostructures Humanities and Social Sciences Hybridization Insulators Interlayers Moire method Molybdenum Molybdenum compounds multidisciplinary Paramagnetism Physics Science Science (multidisciplinary) Semiconductors Spectroscopy Spectrum analysis Superlattices Two dimensional materials |
title | Strongly correlated electrons and hybrid excitons in a moiré heterostructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strongly%20correlated%20electrons%20and%20hybrid%20excitons%20in%20a%20moir%C3%A9%20heterostructure&rft.jtitle=Nature%20(London)&rft.au=Shimazaki,%20Yuya&rft.date=2020-04-23&rft.volume=580&rft.issue=7804&rft.spage=472&rft.epage=477&rft.pages=472-477&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2191-2&rft_dat=%3Cgale_proqu%3EA621714670%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396319534&rft_id=info:pmid/32322064&rft_galeid=A621714670&rfr_iscdi=true |