Characterization of Long Linear and Branched Alkanes and Alcohols for Temperatures up to 573.15 K by Surface Light Scattering and Molecular Dynamics Simulations

This work contributes to the characterization of long linear and branched alkanes and alcohols via the determination of their thermophysical properties up to temperatures of 573.15 K. For this, experimental techniques including surface light scattering (SLS) and molecular dynamics (MD) simulations w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2020-05, Vol.124 (20), p.4146-4163
Hauptverfasser: Klein, Tobias, Lenahan, Frances D, Kerscher, Manuel, Rausch, Michael H, Economou, Ioannis G, Koller, Thomas M, Fröba, Andreas P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4163
container_issue 20
container_start_page 4146
container_title The journal of physical chemistry. B
container_volume 124
creator Klein, Tobias
Lenahan, Frances D
Kerscher, Manuel
Rausch, Michael H
Economou, Ioannis G
Koller, Thomas M
Fröba, Andreas P
description This work contributes to the characterization of long linear and branched alkanes and alcohols via the determination of their thermophysical properties up to temperatures of 573.15 K. For this, experimental techniques including surface light scattering (SLS) and molecular dynamics (MD) simulations were used under equilibrium conditions to analyze the influences of chain length, branching, and hydroxylation on liquid density, liquid viscosity, and surface tension. For probing these effects, 12 pure model systems given by the linear alkanes n-dodecane, n-hexadecane, n-octacosane, n-triacontane, and n-tetracontane, the linear alcohols 1-dodecanol, 1-hexadecanol, and 1,12-dodecanediol, the branched alkanes 2,2,4,4,6,8,8-heptamethylnonane (HMN) and 2,6,10,15,19,23-hexamethyltetracosane (squalane), and the branched alcohols 2-butyl-1-octanol and 2-hexyl-1-decanol were investigated at or close to saturation conditions at temperatures between 298.15 and 573.15 K. Based on the experimental results for the liquid densities, liquid viscosities, and surface tensions with average expanded uncertainties (k = 2) of 0.061, 2.1, and 2.6%, respectively, the performance of the three commonly employed force fields (FFs) TraPPE, MARTINI, and L-OPLS was assessed in MD simulations. To improve the simulation results for the best-performing all-atom L-OPLS FF at larger temperatures, a modified version was suggested. This incorporates a temperature dependence for the energy parameters of the Lennard-Jones potential obtained by calibrating only against the experimental liquid density data of n-dodecane. By transferring this approach to all other systems studied, the modified L-OPLS FF shows now a distinctly better representation of the equilibrium and transport properties of the long alkanes and alcohols, especially at high temperatures.
doi_str_mv 10.1021/acs.jpcb.0c01740
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2393665190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393665190</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-89f8a2e7acf185f2437a9244fad89246696e3d9dd66299e855c3b4b31f89e6b23</originalsourceid><addsrcrecordid>eNp1UTtv2zAQJooUzat7p4JjhtjlQ6TE0XXStKiLDk5m4UQdY6WSqJDS4P6a_tRSsdOtw-EOx-_Bw0fIB86WnAn-CWxcPg22WjLLeJ6xN-SMK8EWqfKT46w506fkPMYnxoQShX5HTqWQXCmRn5E_6x0EsCOG5jeMje-pd3Tj-0e6aXqEQKGv6ecAvd1hTVftL-gxvixXrfU730bqfKD32A0YYJxCep0GOnqqcrnkin6n1Z5up-DAYtJ83I10a2GcDZPJLPTDt2inNnnd7HvoGhvptunSYv5OvCRvHbQR3x_7BXn4cnu__rrY_Lz7tl5tFiClHheFcQUIzME6XignMpmDEVnmoC5S19polLWpa62FMVgoZWWVVZK7wqCuhLwgVwfdIfjnCeNYdk202LbpYD_FUkgjtVbcsARlB6gNPsaArhxC00HYl5yVcy5lyqWccymPuSTKx6P6VHVY_yO8BpEA1wfAC9VPoU_H_l_vL4G0miM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393665190</pqid></control><display><type>article</type><title>Characterization of Long Linear and Branched Alkanes and Alcohols for Temperatures up to 573.15 K by Surface Light Scattering and Molecular Dynamics Simulations</title><source>ACS Publications</source><creator>Klein, Tobias ; Lenahan, Frances D ; Kerscher, Manuel ; Rausch, Michael H ; Economou, Ioannis G ; Koller, Thomas M ; Fröba, Andreas P</creator><creatorcontrib>Klein, Tobias ; Lenahan, Frances D ; Kerscher, Manuel ; Rausch, Michael H ; Economou, Ioannis G ; Koller, Thomas M ; Fröba, Andreas P</creatorcontrib><description>This work contributes to the characterization of long linear and branched alkanes and alcohols via the determination of their thermophysical properties up to temperatures of 573.15 K. For this, experimental techniques including surface light scattering (SLS) and molecular dynamics (MD) simulations were used under equilibrium conditions to analyze the influences of chain length, branching, and hydroxylation on liquid density, liquid viscosity, and surface tension. For probing these effects, 12 pure model systems given by the linear alkanes n-dodecane, n-hexadecane, n-octacosane, n-triacontane, and n-tetracontane, the linear alcohols 1-dodecanol, 1-hexadecanol, and 1,12-dodecanediol, the branched alkanes 2,2,4,4,6,8,8-heptamethylnonane (HMN) and 2,6,10,15,19,23-hexamethyltetracosane (squalane), and the branched alcohols 2-butyl-1-octanol and 2-hexyl-1-decanol were investigated at or close to saturation conditions at temperatures between 298.15 and 573.15 K. Based on the experimental results for the liquid densities, liquid viscosities, and surface tensions with average expanded uncertainties (k = 2) of 0.061, 2.1, and 2.6%, respectively, the performance of the three commonly employed force fields (FFs) TraPPE, MARTINI, and L-OPLS was assessed in MD simulations. To improve the simulation results for the best-performing all-atom L-OPLS FF at larger temperatures, a modified version was suggested. This incorporates a temperature dependence for the energy parameters of the Lennard-Jones potential obtained by calibrating only against the experimental liquid density data of n-dodecane. By transferring this approach to all other systems studied, the modified L-OPLS FF shows now a distinctly better representation of the equilibrium and transport properties of the long alkanes and alcohols, especially at high temperatures.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.0c01740</identifier><identifier>PMID: 32315527</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2020-05, Vol.124 (20), p.4146-4163</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-89f8a2e7acf185f2437a9244fad89246696e3d9dd66299e855c3b4b31f89e6b23</citedby><cites>FETCH-LOGICAL-a336t-89f8a2e7acf185f2437a9244fad89246696e3d9dd66299e855c3b4b31f89e6b23</cites><orcidid>0000-0003-2361-7591 ; 0000-0002-9616-3888 ; 0000-0003-0719-6758 ; 0000-0002-2409-6831 ; 0000-0003-4917-3079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.0c01740$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.0c01740$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32315527$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, Tobias</creatorcontrib><creatorcontrib>Lenahan, Frances D</creatorcontrib><creatorcontrib>Kerscher, Manuel</creatorcontrib><creatorcontrib>Rausch, Michael H</creatorcontrib><creatorcontrib>Economou, Ioannis G</creatorcontrib><creatorcontrib>Koller, Thomas M</creatorcontrib><creatorcontrib>Fröba, Andreas P</creatorcontrib><title>Characterization of Long Linear and Branched Alkanes and Alcohols for Temperatures up to 573.15 K by Surface Light Scattering and Molecular Dynamics Simulations</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>This work contributes to the characterization of long linear and branched alkanes and alcohols via the determination of their thermophysical properties up to temperatures of 573.15 K. For this, experimental techniques including surface light scattering (SLS) and molecular dynamics (MD) simulations were used under equilibrium conditions to analyze the influences of chain length, branching, and hydroxylation on liquid density, liquid viscosity, and surface tension. For probing these effects, 12 pure model systems given by the linear alkanes n-dodecane, n-hexadecane, n-octacosane, n-triacontane, and n-tetracontane, the linear alcohols 1-dodecanol, 1-hexadecanol, and 1,12-dodecanediol, the branched alkanes 2,2,4,4,6,8,8-heptamethylnonane (HMN) and 2,6,10,15,19,23-hexamethyltetracosane (squalane), and the branched alcohols 2-butyl-1-octanol and 2-hexyl-1-decanol were investigated at or close to saturation conditions at temperatures between 298.15 and 573.15 K. Based on the experimental results for the liquid densities, liquid viscosities, and surface tensions with average expanded uncertainties (k = 2) of 0.061, 2.1, and 2.6%, respectively, the performance of the three commonly employed force fields (FFs) TraPPE, MARTINI, and L-OPLS was assessed in MD simulations. To improve the simulation results for the best-performing all-atom L-OPLS FF at larger temperatures, a modified version was suggested. This incorporates a temperature dependence for the energy parameters of the Lennard-Jones potential obtained by calibrating only against the experimental liquid density data of n-dodecane. By transferring this approach to all other systems studied, the modified L-OPLS FF shows now a distinctly better representation of the equilibrium and transport properties of the long alkanes and alcohols, especially at high temperatures.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UTtv2zAQJooUzat7p4JjhtjlQ6TE0XXStKiLDk5m4UQdY6WSqJDS4P6a_tRSsdOtw-EOx-_Bw0fIB86WnAn-CWxcPg22WjLLeJ6xN-SMK8EWqfKT46w506fkPMYnxoQShX5HTqWQXCmRn5E_6x0EsCOG5jeMje-pd3Tj-0e6aXqEQKGv6ecAvd1hTVftL-gxvixXrfU730bqfKD32A0YYJxCep0GOnqqcrnkin6n1Z5up-DAYtJ83I10a2GcDZPJLPTDt2inNnnd7HvoGhvptunSYv5OvCRvHbQR3x_7BXn4cnu__rrY_Lz7tl5tFiClHheFcQUIzME6XignMpmDEVnmoC5S19polLWpa62FMVgoZWWVVZK7wqCuhLwgVwfdIfjnCeNYdk202LbpYD_FUkgjtVbcsARlB6gNPsaArhxC00HYl5yVcy5lyqWccymPuSTKx6P6VHVY_yO8BpEA1wfAC9VPoU_H_l_vL4G0miM</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>Klein, Tobias</creator><creator>Lenahan, Frances D</creator><creator>Kerscher, Manuel</creator><creator>Rausch, Michael H</creator><creator>Economou, Ioannis G</creator><creator>Koller, Thomas M</creator><creator>Fröba, Andreas P</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2361-7591</orcidid><orcidid>https://orcid.org/0000-0002-9616-3888</orcidid><orcidid>https://orcid.org/0000-0003-0719-6758</orcidid><orcidid>https://orcid.org/0000-0002-2409-6831</orcidid><orcidid>https://orcid.org/0000-0003-4917-3079</orcidid></search><sort><creationdate>20200521</creationdate><title>Characterization of Long Linear and Branched Alkanes and Alcohols for Temperatures up to 573.15 K by Surface Light Scattering and Molecular Dynamics Simulations</title><author>Klein, Tobias ; Lenahan, Frances D ; Kerscher, Manuel ; Rausch, Michael H ; Economou, Ioannis G ; Koller, Thomas M ; Fröba, Andreas P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-89f8a2e7acf185f2437a9244fad89246696e3d9dd66299e855c3b4b31f89e6b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, Tobias</creatorcontrib><creatorcontrib>Lenahan, Frances D</creatorcontrib><creatorcontrib>Kerscher, Manuel</creatorcontrib><creatorcontrib>Rausch, Michael H</creatorcontrib><creatorcontrib>Economou, Ioannis G</creatorcontrib><creatorcontrib>Koller, Thomas M</creatorcontrib><creatorcontrib>Fröba, Andreas P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, Tobias</au><au>Lenahan, Frances D</au><au>Kerscher, Manuel</au><au>Rausch, Michael H</au><au>Economou, Ioannis G</au><au>Koller, Thomas M</au><au>Fröba, Andreas P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Long Linear and Branched Alkanes and Alcohols for Temperatures up to 573.15 K by Surface Light Scattering and Molecular Dynamics Simulations</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2020-05-21</date><risdate>2020</risdate><volume>124</volume><issue>20</issue><spage>4146</spage><epage>4163</epage><pages>4146-4163</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>This work contributes to the characterization of long linear and branched alkanes and alcohols via the determination of their thermophysical properties up to temperatures of 573.15 K. For this, experimental techniques including surface light scattering (SLS) and molecular dynamics (MD) simulations were used under equilibrium conditions to analyze the influences of chain length, branching, and hydroxylation on liquid density, liquid viscosity, and surface tension. For probing these effects, 12 pure model systems given by the linear alkanes n-dodecane, n-hexadecane, n-octacosane, n-triacontane, and n-tetracontane, the linear alcohols 1-dodecanol, 1-hexadecanol, and 1,12-dodecanediol, the branched alkanes 2,2,4,4,6,8,8-heptamethylnonane (HMN) and 2,6,10,15,19,23-hexamethyltetracosane (squalane), and the branched alcohols 2-butyl-1-octanol and 2-hexyl-1-decanol were investigated at or close to saturation conditions at temperatures between 298.15 and 573.15 K. Based on the experimental results for the liquid densities, liquid viscosities, and surface tensions with average expanded uncertainties (k = 2) of 0.061, 2.1, and 2.6%, respectively, the performance of the three commonly employed force fields (FFs) TraPPE, MARTINI, and L-OPLS was assessed in MD simulations. To improve the simulation results for the best-performing all-atom L-OPLS FF at larger temperatures, a modified version was suggested. This incorporates a temperature dependence for the energy parameters of the Lennard-Jones potential obtained by calibrating only against the experimental liquid density data of n-dodecane. By transferring this approach to all other systems studied, the modified L-OPLS FF shows now a distinctly better representation of the equilibrium and transport properties of the long alkanes and alcohols, especially at high temperatures.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32315527</pmid><doi>10.1021/acs.jpcb.0c01740</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2361-7591</orcidid><orcidid>https://orcid.org/0000-0002-9616-3888</orcidid><orcidid>https://orcid.org/0000-0003-0719-6758</orcidid><orcidid>https://orcid.org/0000-0002-2409-6831</orcidid><orcidid>https://orcid.org/0000-0003-4917-3079</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2020-05, Vol.124 (20), p.4146-4163
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_2393665190
source ACS Publications
title Characterization of Long Linear and Branched Alkanes and Alcohols for Temperatures up to 573.15 K by Surface Light Scattering and Molecular Dynamics Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Long%20Linear%20and%20Branched%20Alkanes%20and%20Alcohols%20for%20Temperatures%20up%20to%20573.15%20K%20by%20Surface%20Light%20Scattering%20and%20Molecular%20Dynamics%20Simulations&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Klein,%20Tobias&rft.date=2020-05-21&rft.volume=124&rft.issue=20&rft.spage=4146&rft.epage=4163&rft.pages=4146-4163&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.0c01740&rft_dat=%3Cproquest_cross%3E2393665190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393665190&rft_id=info:pmid/32315527&rfr_iscdi=true