Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump
Introduction: The miniaturization of blood pumps has become a trend due to the advantage of easier transplantation, especially for pediatric patients. In small-scale pumps, it is much easier and more cost-efficient to manufacture the impeller with straight blades compared to spiral-profile blades. M...
Gespeichert in:
Veröffentlicht in: | International journal of artificial organs 2020-12, Vol.43 (12), p.782-795 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 795 |
---|---|
container_issue | 12 |
container_start_page | 782 |
container_title | International journal of artificial organs |
container_volume | 43 |
creator | Fang, Peng Du, Jianjun Yu, Shunzhou |
description | Introduction:
The miniaturization of blood pumps has become a trend due to the advantage of easier transplantation, especially for pediatric patients. In small-scale pumps, it is much easier and more cost-efficient to manufacture the impeller with straight blades compared to spiral-profile blades.
Methods:
Straight-blade impeller designs with different blade angles, blade numbers, and impeller flow passage positions are evaluated using the computational fluid dynamics method. Blade angles (θ = 0°, 20°, 30°, and 40°), blade numbers (N = 5, 6, 7, and 8), and three positions of impeller flow passage (referred to as top, middle, and bottom) are selected as the studied parametric values.
Results:
The numerical results reveal that with increasing blade angle, the pressure head and the hydraulic efficiency increase, and the average scalar shear stress and the normalized index of hemolysis decrease. The minimum radial force and axial thrust are obtained when θ equals 20°. In addition, the minimum average scalar shear stress and normalized index of hemolysis values are obtained when N = 6, and the maximum values are obtained when N = 5. Regarding the impeller flow passage position, the axial thrust and the stagnation area forming in the impeller eye are reduced as the flow passage height declines.
Conclusion:
The consideration of a blade angle can greatly improve the performance of blood pumps, although the influence of the blade number is not very easily determined. The bottom position of the impeller flow passage is the best design. |
doi_str_mv | 10.1177/0391398820913559 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2393055723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0391398820913559</sage_id><sourcerecordid>2393055723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-c91a982f564807cc461b9c8efc6fe798309dc85efe9b5e60b812853617e4382c3</originalsourceid><addsrcrecordid>eNp1kctr3DAQxkVoyG4e956KoJfk4ERvS8cSmnRhoZfkbGR5tFGwJVeyC_3v682mLSz0NDDzm28eH0IfKbmltK7vCDeUG60ZWaKU5gStac1EpYggH9B6X6729RU6L-WVEKqEkGdoxRmnjEqzRnEzjND3kPF1mbINu5cJt73t4AZ3UMIu4p82BzuFFAu2scPTC4SMQ_T9DNEBTnGfwiNkn_Jg31IeW-wgTjn4eWf7RTClDo_zMF6iU2_7Alfv8QI9P3x9uv9Wbb8_bu6_bCvHlZwqZ6g1mnmphCa1c0LR1jgN3ikPtdGcmM5pCR5MK0GRVlOmJVe0BsE1c_wCXR90x5x-zFCmZgjFLYfaCGkuDeOGEylrxhf08xH6muYcl-0aJmqilNFKLBQ5UC6nUjL4ZsxhsPlXQ0mz96I59mJp-fQuPLcDdH8b_jx_AaoDUOwO_k39r-Bvs1aQkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470669864</pqid></control><display><type>article</type><title>Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump</title><source>MEDLINE</source><source>SAGE Complete A-Z List</source><creator>Fang, Peng ; Du, Jianjun ; Yu, Shunzhou</creator><creatorcontrib>Fang, Peng ; Du, Jianjun ; Yu, Shunzhou</creatorcontrib><description>Introduction:
The miniaturization of blood pumps has become a trend due to the advantage of easier transplantation, especially for pediatric patients. In small-scale pumps, it is much easier and more cost-efficient to manufacture the impeller with straight blades compared to spiral-profile blades.
Methods:
Straight-blade impeller designs with different blade angles, blade numbers, and impeller flow passage positions are evaluated using the computational fluid dynamics method. Blade angles (θ = 0°, 20°, 30°, and 40°), blade numbers (N = 5, 6, 7, and 8), and three positions of impeller flow passage (referred to as top, middle, and bottom) are selected as the studied parametric values.
Results:
The numerical results reveal that with increasing blade angle, the pressure head and the hydraulic efficiency increase, and the average scalar shear stress and the normalized index of hemolysis decrease. The minimum radial force and axial thrust are obtained when θ equals 20°. In addition, the minimum average scalar shear stress and normalized index of hemolysis values are obtained when N = 6, and the maximum values are obtained when N = 5. Regarding the impeller flow passage position, the axial thrust and the stagnation area forming in the impeller eye are reduced as the flow passage height declines.
Conclusion:
The consideration of a blade angle can greatly improve the performance of blood pumps, although the influence of the blade number is not very easily determined. The bottom position of the impeller flow passage is the best design.</description><identifier>ISSN: 0391-3988</identifier><identifier>EISSN: 1724-6040</identifier><identifier>DOI: 10.1177/0391398820913559</identifier><identifier>PMID: 32312159</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Assisted Circulation - instrumentation ; Blades ; Blood ; Blood pumps ; Centrifugal pumps ; Centrifugation - instrumentation ; Computational fluid dynamics ; Computer applications ; Computer-Aided Design ; Equipment Design ; Fluid dynamics ; Heart-Assist Devices - adverse effects ; Hemolysis ; Humans ; Hydrodynamics ; Impellers ; Miniaturization ; Miniaturization - methods ; Performance enhancement ; Pressure head ; Pumps ; Shear stress ; Stress, Mechanical ; Thrust ; Transplantation</subject><ispartof>International journal of artificial organs, 2020-12, Vol.43 (12), p.782-795</ispartof><rights>The Author(s) 2020</rights><rights>Copyright Wichtig Editore s.r.l. Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-c91a982f564807cc461b9c8efc6fe798309dc85efe9b5e60b812853617e4382c3</citedby><cites>FETCH-LOGICAL-c365t-c91a982f564807cc461b9c8efc6fe798309dc85efe9b5e60b812853617e4382c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0391398820913559$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0391398820913559$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21818,27923,27924,43620,43621</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32312159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Peng</creatorcontrib><creatorcontrib>Du, Jianjun</creatorcontrib><creatorcontrib>Yu, Shunzhou</creatorcontrib><title>Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump</title><title>International journal of artificial organs</title><addtitle>Int J Artif Organs</addtitle><description>Introduction:
The miniaturization of blood pumps has become a trend due to the advantage of easier transplantation, especially for pediatric patients. In small-scale pumps, it is much easier and more cost-efficient to manufacture the impeller with straight blades compared to spiral-profile blades.
Methods:
Straight-blade impeller designs with different blade angles, blade numbers, and impeller flow passage positions are evaluated using the computational fluid dynamics method. Blade angles (θ = 0°, 20°, 30°, and 40°), blade numbers (N = 5, 6, 7, and 8), and three positions of impeller flow passage (referred to as top, middle, and bottom) are selected as the studied parametric values.
Results:
The numerical results reveal that with increasing blade angle, the pressure head and the hydraulic efficiency increase, and the average scalar shear stress and the normalized index of hemolysis decrease. The minimum radial force and axial thrust are obtained when θ equals 20°. In addition, the minimum average scalar shear stress and normalized index of hemolysis values are obtained when N = 6, and the maximum values are obtained when N = 5. Regarding the impeller flow passage position, the axial thrust and the stagnation area forming in the impeller eye are reduced as the flow passage height declines.
Conclusion:
The consideration of a blade angle can greatly improve the performance of blood pumps, although the influence of the blade number is not very easily determined. The bottom position of the impeller flow passage is the best design.</description><subject>Assisted Circulation - instrumentation</subject><subject>Blades</subject><subject>Blood</subject><subject>Blood pumps</subject><subject>Centrifugal pumps</subject><subject>Centrifugation - instrumentation</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer-Aided Design</subject><subject>Equipment Design</subject><subject>Fluid dynamics</subject><subject>Heart-Assist Devices - adverse effects</subject><subject>Hemolysis</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Impellers</subject><subject>Miniaturization</subject><subject>Miniaturization - methods</subject><subject>Performance enhancement</subject><subject>Pressure head</subject><subject>Pumps</subject><subject>Shear stress</subject><subject>Stress, Mechanical</subject><subject>Thrust</subject><subject>Transplantation</subject><issn>0391-3988</issn><issn>1724-6040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctr3DAQxkVoyG4e956KoJfk4ERvS8cSmnRhoZfkbGR5tFGwJVeyC_3v682mLSz0NDDzm28eH0IfKbmltK7vCDeUG60ZWaKU5gStac1EpYggH9B6X6729RU6L-WVEKqEkGdoxRmnjEqzRnEzjND3kPF1mbINu5cJt73t4AZ3UMIu4p82BzuFFAu2scPTC4SMQ_T9DNEBTnGfwiNkn_Jg31IeW-wgTjn4eWf7RTClDo_zMF6iU2_7Alfv8QI9P3x9uv9Wbb8_bu6_bCvHlZwqZ6g1mnmphCa1c0LR1jgN3ikPtdGcmM5pCR5MK0GRVlOmJVe0BsE1c_wCXR90x5x-zFCmZgjFLYfaCGkuDeOGEylrxhf08xH6muYcl-0aJmqilNFKLBQ5UC6nUjL4ZsxhsPlXQ0mz96I59mJp-fQuPLcDdH8b_jx_AaoDUOwO_k39r-Bvs1aQkQ</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Fang, Peng</creator><creator>Du, Jianjun</creator><creator>Yu, Shunzhou</creator><general>SAGE Publications</general><general>Wichtig Editore s.r.l</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202012</creationdate><title>Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump</title><author>Fang, Peng ; Du, Jianjun ; Yu, Shunzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-c91a982f564807cc461b9c8efc6fe798309dc85efe9b5e60b812853617e4382c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Assisted Circulation - instrumentation</topic><topic>Blades</topic><topic>Blood</topic><topic>Blood pumps</topic><topic>Centrifugal pumps</topic><topic>Centrifugation - instrumentation</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer-Aided Design</topic><topic>Equipment Design</topic><topic>Fluid dynamics</topic><topic>Heart-Assist Devices - adverse effects</topic><topic>Hemolysis</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Impellers</topic><topic>Miniaturization</topic><topic>Miniaturization - methods</topic><topic>Performance enhancement</topic><topic>Pressure head</topic><topic>Pumps</topic><topic>Shear stress</topic><topic>Stress, Mechanical</topic><topic>Thrust</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Peng</creatorcontrib><creatorcontrib>Du, Jianjun</creatorcontrib><creatorcontrib>Yu, Shunzhou</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Peng</au><au>Du, Jianjun</au><au>Yu, Shunzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump</atitle><jtitle>International journal of artificial organs</jtitle><addtitle>Int J Artif Organs</addtitle><date>2020-12</date><risdate>2020</risdate><volume>43</volume><issue>12</issue><spage>782</spage><epage>795</epage><pages>782-795</pages><issn>0391-3988</issn><eissn>1724-6040</eissn><abstract>Introduction:
The miniaturization of blood pumps has become a trend due to the advantage of easier transplantation, especially for pediatric patients. In small-scale pumps, it is much easier and more cost-efficient to manufacture the impeller with straight blades compared to spiral-profile blades.
Methods:
Straight-blade impeller designs with different blade angles, blade numbers, and impeller flow passage positions are evaluated using the computational fluid dynamics method. Blade angles (θ = 0°, 20°, 30°, and 40°), blade numbers (N = 5, 6, 7, and 8), and three positions of impeller flow passage (referred to as top, middle, and bottom) are selected as the studied parametric values.
Results:
The numerical results reveal that with increasing blade angle, the pressure head and the hydraulic efficiency increase, and the average scalar shear stress and the normalized index of hemolysis decrease. The minimum radial force and axial thrust are obtained when θ equals 20°. In addition, the minimum average scalar shear stress and normalized index of hemolysis values are obtained when N = 6, and the maximum values are obtained when N = 5. Regarding the impeller flow passage position, the axial thrust and the stagnation area forming in the impeller eye are reduced as the flow passage height declines.
Conclusion:
The consideration of a blade angle can greatly improve the performance of blood pumps, although the influence of the blade number is not very easily determined. The bottom position of the impeller flow passage is the best design.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>32312159</pmid><doi>10.1177/0391398820913559</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0391-3988 |
ispartof | International journal of artificial organs, 2020-12, Vol.43 (12), p.782-795 |
issn | 0391-3988 1724-6040 |
language | eng |
recordid | cdi_proquest_miscellaneous_2393055723 |
source | MEDLINE; SAGE Complete A-Z List |
subjects | Assisted Circulation - instrumentation Blades Blood Blood pumps Centrifugal pumps Centrifugation - instrumentation Computational fluid dynamics Computer applications Computer-Aided Design Equipment Design Fluid dynamics Heart-Assist Devices - adverse effects Hemolysis Humans Hydrodynamics Impellers Miniaturization Miniaturization - methods Performance enhancement Pressure head Pumps Shear stress Stress, Mechanical Thrust Transplantation |
title | Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impeller%20(straight%20blade)%20design%20variations%20and%20their%20influence%20on%20the%20performance%20of%20a%20centrifugal%20blood%20pump&rft.jtitle=International%20journal%20of%20artificial%20organs&rft.au=Fang,%20Peng&rft.date=2020-12&rft.volume=43&rft.issue=12&rft.spage=782&rft.epage=795&rft.pages=782-795&rft.issn=0391-3988&rft.eissn=1724-6040&rft_id=info:doi/10.1177/0391398820913559&rft_dat=%3Cproquest_cross%3E2393055723%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470669864&rft_id=info:pmid/32312159&rft_sage_id=10.1177_0391398820913559&rfr_iscdi=true |