Correlated Parameters to Accurately Measure Uncertainty in Deep Neural Networks

In this article, a novel approach for training deep neural networks using Bayesian techniques is presented. The Bayesian methodology allows for an easy evaluation of model uncertainty and, additionally, is robust to overfitting. These are commonly the two main problems classical, i.e., non-Bayesian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2021-03, Vol.32 (3), p.1037-1051
Hauptverfasser: Posch, Konstantin, Pilz, Juergen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!