Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb2Se3–CdS Interfacial Layer in Sb2Se3 Thin-Film Photovoltaics

The crystal structure of Sb2Se3 gives rise to unique properties that cannot otherwise be achieved with conventional thin-film photovoltaic materials, such as CdTe or Cu­(In,Ga)­Se2. It has previously been proposed that grain boundaries can be made benign provided only the weak van der Waals forces b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-05, Vol.12 (19), p.21730-21738
Hauptverfasser: Williams, Rhys E, Ramasse, Quentin M, McKenna, Keith P, Phillips, Laurie J, Yates, Peter J, Hutter, Oliver S, Durose, Ken, Major, Jonathan D, Mendis, Budhika G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21738
container_issue 19
container_start_page 21730
container_title ACS applied materials & interfaces
container_volume 12
creator Williams, Rhys E
Ramasse, Quentin M
McKenna, Keith P
Phillips, Laurie J
Yates, Peter J
Hutter, Oliver S
Durose, Ken
Major, Jonathan D
Mendis, Budhika G
description The crystal structure of Sb2Se3 gives rise to unique properties that cannot otherwise be achieved with conventional thin-film photovoltaic materials, such as CdTe or Cu­(In,Ga)­Se2. It has previously been proposed that grain boundaries can be made benign provided only the weak van der Waals forces between the (Sb4Se6) n ribbons are disrupted. Here, it is shown that non-radiative recombination is suppressed even for grain boundaries cutting across the (Sb4Se6) n ribbons. This is due to a remarkable self-healing process, whereby atoms at the grain boundary can relax to remove any electronic defect states within the band gap. Grain boundaries can, however, impede charge transport due to the fact that carriers have a higher mobility along the (Sb4Se6) n ribbons. Because of the ribbon misorientation, certain grain boundaries can effectively block charge collection. Furthermore, it is shown that CdS is not a suitable emitter to partner Sb2Se3 due to Sb and Se interdiffusion. As a result, a highly defective Sb2Se3 interfacial layer is formed that potentially reduces device efficiency through interface recombination.
doi_str_mv 10.1021/acsami.0c03690
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2393038876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393038876</sourcerecordid><originalsourceid>FETCH-LOGICAL-a263t-80a6bd3a52fe9920d9282a8e21384e5c586564007f1a11333f92c62dd5bf1e423</originalsourceid><addsrcrecordid>eNo9kM1Kw0AYRQdRsFa3rmcpQur8JGmytLU_QkEhdR2-Tr5ppkwnmkkK3bl17Rv6JEZSXN27OFwuh5BbzkacCf4AysPejJhiMk7ZGRnwNAyDRETi_L-H4SW58n7HWCwFiwbka3YwBTqFVFc1zdDqoESwxm3pBJ3ZOrqowTg6qVpXQG3QU3AFBbo029Ie6RNqVI05IM02IkP58_k9LTL67BqsNSgDlq7giDXtNnqCrkvjgrmxe_paVk11qGwDRvlrcqHBerw55ZC8zWfr6TJYvSyep4-rAEQsmyBhEG8KCZHQmKaCFalIBCQouExCjFSUxFEcMjbWHDiXUupUqFgURbTRHEMhh-Su332vq48WfZPvjVdoLTisWp8LmUomk2Qcd-h9j3Zq813V1q47lnOW__nOe9_5ybf8BfeSdHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393038876</pqid></control><display><type>article</type><title>Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb2Se3–CdS Interfacial Layer in Sb2Se3 Thin-Film Photovoltaics</title><source>ACS Publications</source><creator>Williams, Rhys E ; Ramasse, Quentin M ; McKenna, Keith P ; Phillips, Laurie J ; Yates, Peter J ; Hutter, Oliver S ; Durose, Ken ; Major, Jonathan D ; Mendis, Budhika G</creator><creatorcontrib>Williams, Rhys E ; Ramasse, Quentin M ; McKenna, Keith P ; Phillips, Laurie J ; Yates, Peter J ; Hutter, Oliver S ; Durose, Ken ; Major, Jonathan D ; Mendis, Budhika G</creatorcontrib><description>The crystal structure of Sb2Se3 gives rise to unique properties that cannot otherwise be achieved with conventional thin-film photovoltaic materials, such as CdTe or Cu­(In,Ga)­Se2. It has previously been proposed that grain boundaries can be made benign provided only the weak van der Waals forces between the (Sb4Se6) n ribbons are disrupted. Here, it is shown that non-radiative recombination is suppressed even for grain boundaries cutting across the (Sb4Se6) n ribbons. This is due to a remarkable self-healing process, whereby atoms at the grain boundary can relax to remove any electronic defect states within the band gap. Grain boundaries can, however, impede charge transport due to the fact that carriers have a higher mobility along the (Sb4Se6) n ribbons. Because of the ribbon misorientation, certain grain boundaries can effectively block charge collection. Furthermore, it is shown that CdS is not a suitable emitter to partner Sb2Se3 due to Sb and Se interdiffusion. As a result, a highly defective Sb2Se3 interfacial layer is formed that potentially reduces device efficiency through interface recombination.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c03690</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2020-05, Vol.12 (19), p.21730-21738</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5554-1985 ; 0000-0001-7466-2283 ; 0000-0003-0975-3626 ; 0000-0003-2334-2866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c03690$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c03690$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Williams, Rhys E</creatorcontrib><creatorcontrib>Ramasse, Quentin M</creatorcontrib><creatorcontrib>McKenna, Keith P</creatorcontrib><creatorcontrib>Phillips, Laurie J</creatorcontrib><creatorcontrib>Yates, Peter J</creatorcontrib><creatorcontrib>Hutter, Oliver S</creatorcontrib><creatorcontrib>Durose, Ken</creatorcontrib><creatorcontrib>Major, Jonathan D</creatorcontrib><creatorcontrib>Mendis, Budhika G</creatorcontrib><title>Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb2Se3–CdS Interfacial Layer in Sb2Se3 Thin-Film Photovoltaics</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The crystal structure of Sb2Se3 gives rise to unique properties that cannot otherwise be achieved with conventional thin-film photovoltaic materials, such as CdTe or Cu­(In,Ga)­Se2. It has previously been proposed that grain boundaries can be made benign provided only the weak van der Waals forces between the (Sb4Se6) n ribbons are disrupted. Here, it is shown that non-radiative recombination is suppressed even for grain boundaries cutting across the (Sb4Se6) n ribbons. This is due to a remarkable self-healing process, whereby atoms at the grain boundary can relax to remove any electronic defect states within the band gap. Grain boundaries can, however, impede charge transport due to the fact that carriers have a higher mobility along the (Sb4Se6) n ribbons. Because of the ribbon misorientation, certain grain boundaries can effectively block charge collection. Furthermore, it is shown that CdS is not a suitable emitter to partner Sb2Se3 due to Sb and Se interdiffusion. As a result, a highly defective Sb2Se3 interfacial layer is formed that potentially reduces device efficiency through interface recombination.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AYRQdRsFa3rmcpQur8JGmytLU_QkEhdR2-Tr5ppkwnmkkK3bl17Rv6JEZSXN27OFwuh5BbzkacCf4AysPejJhiMk7ZGRnwNAyDRETi_L-H4SW58n7HWCwFiwbka3YwBTqFVFc1zdDqoESwxm3pBJ3ZOrqowTg6qVpXQG3QU3AFBbo029Ie6RNqVI05IM02IkP58_k9LTL67BqsNSgDlq7giDXtNnqCrkvjgrmxe_paVk11qGwDRvlrcqHBerw55ZC8zWfr6TJYvSyep4-rAEQsmyBhEG8KCZHQmKaCFalIBCQouExCjFSUxFEcMjbWHDiXUupUqFgURbTRHEMhh-Su332vq48WfZPvjVdoLTisWp8LmUomk2Qcd-h9j3Zq813V1q47lnOW__nOe9_5ybf8BfeSdHg</recordid><startdate>20200513</startdate><enddate>20200513</enddate><creator>Williams, Rhys E</creator><creator>Ramasse, Quentin M</creator><creator>McKenna, Keith P</creator><creator>Phillips, Laurie J</creator><creator>Yates, Peter J</creator><creator>Hutter, Oliver S</creator><creator>Durose, Ken</creator><creator>Major, Jonathan D</creator><creator>Mendis, Budhika G</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5554-1985</orcidid><orcidid>https://orcid.org/0000-0001-7466-2283</orcidid><orcidid>https://orcid.org/0000-0003-0975-3626</orcidid><orcidid>https://orcid.org/0000-0003-2334-2866</orcidid></search><sort><creationdate>20200513</creationdate><title>Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb2Se3–CdS Interfacial Layer in Sb2Se3 Thin-Film Photovoltaics</title><author>Williams, Rhys E ; Ramasse, Quentin M ; McKenna, Keith P ; Phillips, Laurie J ; Yates, Peter J ; Hutter, Oliver S ; Durose, Ken ; Major, Jonathan D ; Mendis, Budhika G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a263t-80a6bd3a52fe9920d9282a8e21384e5c586564007f1a11333f92c62dd5bf1e423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Rhys E</creatorcontrib><creatorcontrib>Ramasse, Quentin M</creatorcontrib><creatorcontrib>McKenna, Keith P</creatorcontrib><creatorcontrib>Phillips, Laurie J</creatorcontrib><creatorcontrib>Yates, Peter J</creatorcontrib><creatorcontrib>Hutter, Oliver S</creatorcontrib><creatorcontrib>Durose, Ken</creatorcontrib><creatorcontrib>Major, Jonathan D</creatorcontrib><creatorcontrib>Mendis, Budhika G</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Rhys E</au><au>Ramasse, Quentin M</au><au>McKenna, Keith P</au><au>Phillips, Laurie J</au><au>Yates, Peter J</au><au>Hutter, Oliver S</au><au>Durose, Ken</au><au>Major, Jonathan D</au><au>Mendis, Budhika G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb2Se3–CdS Interfacial Layer in Sb2Se3 Thin-Film Photovoltaics</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-05-13</date><risdate>2020</risdate><volume>12</volume><issue>19</issue><spage>21730</spage><epage>21738</epage><pages>21730-21738</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The crystal structure of Sb2Se3 gives rise to unique properties that cannot otherwise be achieved with conventional thin-film photovoltaic materials, such as CdTe or Cu­(In,Ga)­Se2. It has previously been proposed that grain boundaries can be made benign provided only the weak van der Waals forces between the (Sb4Se6) n ribbons are disrupted. Here, it is shown that non-radiative recombination is suppressed even for grain boundaries cutting across the (Sb4Se6) n ribbons. This is due to a remarkable self-healing process, whereby atoms at the grain boundary can relax to remove any electronic defect states within the band gap. Grain boundaries can, however, impede charge transport due to the fact that carriers have a higher mobility along the (Sb4Se6) n ribbons. Because of the ribbon misorientation, certain grain boundaries can effectively block charge collection. Furthermore, it is shown that CdS is not a suitable emitter to partner Sb2Se3 due to Sb and Se interdiffusion. As a result, a highly defective Sb2Se3 interfacial layer is formed that potentially reduces device efficiency through interface recombination.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.0c03690</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5554-1985</orcidid><orcidid>https://orcid.org/0000-0001-7466-2283</orcidid><orcidid>https://orcid.org/0000-0003-0975-3626</orcidid><orcidid>https://orcid.org/0000-0003-2334-2866</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-05, Vol.12 (19), p.21730-21738
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2393038876
source ACS Publications
title Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb2Se3–CdS Interfacial Layer in Sb2Se3 Thin-Film Photovoltaics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20Self-healing%20Benign%20Grain%20Boundaries%20and%20a%20Highly%20Defective%20Sb2Se3%E2%80%93CdS%20Interfacial%20Layer%20in%20Sb2Se3%20Thin-Film%20Photovoltaics&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Williams,%20Rhys%20E&rft.date=2020-05-13&rft.volume=12&rft.issue=19&rft.spage=21730&rft.epage=21738&rft.pages=21730-21738&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c03690&rft_dat=%3Cproquest_acs_j%3E2393038876%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393038876&rft_id=info:pmid/&rfr_iscdi=true