Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb2Se3–CdS Interfacial Layer in Sb2Se3 Thin-Film Photovoltaics
The crystal structure of Sb2Se3 gives rise to unique properties that cannot otherwise be achieved with conventional thin-film photovoltaic materials, such as CdTe or Cu(In,Ga)Se2. It has previously been proposed that grain boundaries can be made benign provided only the weak van der Waals forces b...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-05, Vol.12 (19), p.21730-21738 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21738 |
---|---|
container_issue | 19 |
container_start_page | 21730 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Williams, Rhys E Ramasse, Quentin M McKenna, Keith P Phillips, Laurie J Yates, Peter J Hutter, Oliver S Durose, Ken Major, Jonathan D Mendis, Budhika G |
description | The crystal structure of Sb2Se3 gives rise to unique properties that cannot otherwise be achieved with conventional thin-film photovoltaic materials, such as CdTe or Cu(In,Ga)Se2. It has previously been proposed that grain boundaries can be made benign provided only the weak van der Waals forces between the (Sb4Se6) n ribbons are disrupted. Here, it is shown that non-radiative recombination is suppressed even for grain boundaries cutting across the (Sb4Se6) n ribbons. This is due to a remarkable self-healing process, whereby atoms at the grain boundary can relax to remove any electronic defect states within the band gap. Grain boundaries can, however, impede charge transport due to the fact that carriers have a higher mobility along the (Sb4Se6) n ribbons. Because of the ribbon misorientation, certain grain boundaries can effectively block charge collection. Furthermore, it is shown that CdS is not a suitable emitter to partner Sb2Se3 due to Sb and Se interdiffusion. As a result, a highly defective Sb2Se3 interfacial layer is formed that potentially reduces device efficiency through interface recombination. |
doi_str_mv | 10.1021/acsami.0c03690 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2393038876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393038876</sourcerecordid><originalsourceid>FETCH-LOGICAL-a263t-80a6bd3a52fe9920d9282a8e21384e5c586564007f1a11333f92c62dd5bf1e423</originalsourceid><addsrcrecordid>eNo9kM1Kw0AYRQdRsFa3rmcpQur8JGmytLU_QkEhdR2-Tr5ppkwnmkkK3bl17Rv6JEZSXN27OFwuh5BbzkacCf4AysPejJhiMk7ZGRnwNAyDRETi_L-H4SW58n7HWCwFiwbka3YwBTqFVFc1zdDqoESwxm3pBJ3ZOrqowTg6qVpXQG3QU3AFBbo029Ie6RNqVI05IM02IkP58_k9LTL67BqsNSgDlq7giDXtNnqCrkvjgrmxe_paVk11qGwDRvlrcqHBerw55ZC8zWfr6TJYvSyep4-rAEQsmyBhEG8KCZHQmKaCFalIBCQouExCjFSUxFEcMjbWHDiXUupUqFgURbTRHEMhh-Su332vq48WfZPvjVdoLTisWp8LmUomk2Qcd-h9j3Zq813V1q47lnOW__nOe9_5ybf8BfeSdHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393038876</pqid></control><display><type>article</type><title>Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb2Se3–CdS Interfacial Layer in Sb2Se3 Thin-Film Photovoltaics</title><source>ACS Publications</source><creator>Williams, Rhys E ; Ramasse, Quentin M ; McKenna, Keith P ; Phillips, Laurie J ; Yates, Peter J ; Hutter, Oliver S ; Durose, Ken ; Major, Jonathan D ; Mendis, Budhika G</creator><creatorcontrib>Williams, Rhys E ; Ramasse, Quentin M ; McKenna, Keith P ; Phillips, Laurie J ; Yates, Peter J ; Hutter, Oliver S ; Durose, Ken ; Major, Jonathan D ; Mendis, Budhika G</creatorcontrib><description>The crystal structure of Sb2Se3 gives rise to unique properties that cannot otherwise be achieved with conventional thin-film photovoltaic materials, such as CdTe or Cu(In,Ga)Se2. It has previously been proposed that grain boundaries can be made benign provided only the weak van der Waals forces between the (Sb4Se6) n ribbons are disrupted. Here, it is shown that non-radiative recombination is suppressed even for grain boundaries cutting across the (Sb4Se6) n ribbons. This is due to a remarkable self-healing process, whereby atoms at the grain boundary can relax to remove any electronic defect states within the band gap. Grain boundaries can, however, impede charge transport due to the fact that carriers have a higher mobility along the (Sb4Se6) n ribbons. Because of the ribbon misorientation, certain grain boundaries can effectively block charge collection. Furthermore, it is shown that CdS is not a suitable emitter to partner Sb2Se3 due to Sb and Se interdiffusion. As a result, a highly defective Sb2Se3 interfacial layer is formed that potentially reduces device efficiency through interface recombination.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c03690</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2020-05, Vol.12 (19), p.21730-21738</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5554-1985 ; 0000-0001-7466-2283 ; 0000-0003-0975-3626 ; 0000-0003-2334-2866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c03690$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c03690$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Williams, Rhys E</creatorcontrib><creatorcontrib>Ramasse, Quentin M</creatorcontrib><creatorcontrib>McKenna, Keith P</creatorcontrib><creatorcontrib>Phillips, Laurie J</creatorcontrib><creatorcontrib>Yates, Peter J</creatorcontrib><creatorcontrib>Hutter, Oliver S</creatorcontrib><creatorcontrib>Durose, Ken</creatorcontrib><creatorcontrib>Major, Jonathan D</creatorcontrib><creatorcontrib>Mendis, Budhika G</creatorcontrib><title>Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb2Se3–CdS Interfacial Layer in Sb2Se3 Thin-Film Photovoltaics</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The crystal structure of Sb2Se3 gives rise to unique properties that cannot otherwise be achieved with conventional thin-film photovoltaic materials, such as CdTe or Cu(In,Ga)Se2. It has previously been proposed that grain boundaries can be made benign provided only the weak van der Waals forces between the (Sb4Se6) n ribbons are disrupted. Here, it is shown that non-radiative recombination is suppressed even for grain boundaries cutting across the (Sb4Se6) n ribbons. This is due to a remarkable self-healing process, whereby atoms at the grain boundary can relax to remove any electronic defect states within the band gap. Grain boundaries can, however, impede charge transport due to the fact that carriers have a higher mobility along the (Sb4Se6) n ribbons. Because of the ribbon misorientation, certain grain boundaries can effectively block charge collection. Furthermore, it is shown that CdS is not a suitable emitter to partner Sb2Se3 due to Sb and Se interdiffusion. As a result, a highly defective Sb2Se3 interfacial layer is formed that potentially reduces device efficiency through interface recombination.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AYRQdRsFa3rmcpQur8JGmytLU_QkEhdR2-Tr5ppkwnmkkK3bl17Rv6JEZSXN27OFwuh5BbzkacCf4AysPejJhiMk7ZGRnwNAyDRETi_L-H4SW58n7HWCwFiwbka3YwBTqFVFc1zdDqoESwxm3pBJ3ZOrqowTg6qVpXQG3QU3AFBbo029Ie6RNqVI05IM02IkP58_k9LTL67BqsNSgDlq7giDXtNnqCrkvjgrmxe_paVk11qGwDRvlrcqHBerw55ZC8zWfr6TJYvSyep4-rAEQsmyBhEG8KCZHQmKaCFalIBCQouExCjFSUxFEcMjbWHDiXUupUqFgURbTRHEMhh-Su332vq48WfZPvjVdoLTisWp8LmUomk2Qcd-h9j3Zq813V1q47lnOW__nOe9_5ybf8BfeSdHg</recordid><startdate>20200513</startdate><enddate>20200513</enddate><creator>Williams, Rhys E</creator><creator>Ramasse, Quentin M</creator><creator>McKenna, Keith P</creator><creator>Phillips, Laurie J</creator><creator>Yates, Peter J</creator><creator>Hutter, Oliver S</creator><creator>Durose, Ken</creator><creator>Major, Jonathan D</creator><creator>Mendis, Budhika G</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5554-1985</orcidid><orcidid>https://orcid.org/0000-0001-7466-2283</orcidid><orcidid>https://orcid.org/0000-0003-0975-3626</orcidid><orcidid>https://orcid.org/0000-0003-2334-2866</orcidid></search><sort><creationdate>20200513</creationdate><title>Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb2Se3–CdS Interfacial Layer in Sb2Se3 Thin-Film Photovoltaics</title><author>Williams, Rhys E ; Ramasse, Quentin M ; McKenna, Keith P ; Phillips, Laurie J ; Yates, Peter J ; Hutter, Oliver S ; Durose, Ken ; Major, Jonathan D ; Mendis, Budhika G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a263t-80a6bd3a52fe9920d9282a8e21384e5c586564007f1a11333f92c62dd5bf1e423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Rhys E</creatorcontrib><creatorcontrib>Ramasse, Quentin M</creatorcontrib><creatorcontrib>McKenna, Keith P</creatorcontrib><creatorcontrib>Phillips, Laurie J</creatorcontrib><creatorcontrib>Yates, Peter J</creatorcontrib><creatorcontrib>Hutter, Oliver S</creatorcontrib><creatorcontrib>Durose, Ken</creatorcontrib><creatorcontrib>Major, Jonathan D</creatorcontrib><creatorcontrib>Mendis, Budhika G</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Rhys E</au><au>Ramasse, Quentin M</au><au>McKenna, Keith P</au><au>Phillips, Laurie J</au><au>Yates, Peter J</au><au>Hutter, Oliver S</au><au>Durose, Ken</au><au>Major, Jonathan D</au><au>Mendis, Budhika G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb2Se3–CdS Interfacial Layer in Sb2Se3 Thin-Film Photovoltaics</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-05-13</date><risdate>2020</risdate><volume>12</volume><issue>19</issue><spage>21730</spage><epage>21738</epage><pages>21730-21738</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The crystal structure of Sb2Se3 gives rise to unique properties that cannot otherwise be achieved with conventional thin-film photovoltaic materials, such as CdTe or Cu(In,Ga)Se2. It has previously been proposed that grain boundaries can be made benign provided only the weak van der Waals forces between the (Sb4Se6) n ribbons are disrupted. Here, it is shown that non-radiative recombination is suppressed even for grain boundaries cutting across the (Sb4Se6) n ribbons. This is due to a remarkable self-healing process, whereby atoms at the grain boundary can relax to remove any electronic defect states within the band gap. Grain boundaries can, however, impede charge transport due to the fact that carriers have a higher mobility along the (Sb4Se6) n ribbons. Because of the ribbon misorientation, certain grain boundaries can effectively block charge collection. Furthermore, it is shown that CdS is not a suitable emitter to partner Sb2Se3 due to Sb and Se interdiffusion. As a result, a highly defective Sb2Se3 interfacial layer is formed that potentially reduces device efficiency through interface recombination.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.0c03690</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5554-1985</orcidid><orcidid>https://orcid.org/0000-0001-7466-2283</orcidid><orcidid>https://orcid.org/0000-0003-0975-3626</orcidid><orcidid>https://orcid.org/0000-0003-2334-2866</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-05, Vol.12 (19), p.21730-21738 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2393038876 |
source | ACS Publications |
title | Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb2Se3–CdS Interfacial Layer in Sb2Se3 Thin-Film Photovoltaics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20Self-healing%20Benign%20Grain%20Boundaries%20and%20a%20Highly%20Defective%20Sb2Se3%E2%80%93CdS%20Interfacial%20Layer%20in%20Sb2Se3%20Thin-Film%20Photovoltaics&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Williams,%20Rhys%20E&rft.date=2020-05-13&rft.volume=12&rft.issue=19&rft.spage=21730&rft.epage=21738&rft.pages=21730-21738&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c03690&rft_dat=%3Cproquest_acs_j%3E2393038876%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393038876&rft_id=info:pmid/&rfr_iscdi=true |