Photoflexoelectric effect in halide perovskites
Harvesting environmental energy to generate electricity is a key scientific and technological endeavour of our time. Photovoltaic conversion and electromechanical transduction are two common energy-harvesting mechanisms based on, respectively, semiconducting junctions and piezoelectric insulators. H...
Gespeichert in:
Veröffentlicht in: | Nature materials 2020-06, Vol.19 (6), p.605-609 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 609 |
---|---|
container_issue | 6 |
container_start_page | 605 |
container_title | Nature materials |
container_volume | 19 |
creator | Shu, Longlong Ke, Shanming Fei, Linfeng Huang, Wenbin Wang, Zhiguo Gong, Jinhui Jiang, Xiaoning Wang, Li Li, Fei Lei, Shuijin Rao, Zhenggang Zhou, Yangbo Zheng, Ren-Kui Yao, Xi Wang, Yu Stengel, Massimiliano Catalan, Gustau |
description | Harvesting environmental energy to generate electricity is a key scientific and technological endeavour of our time. Photovoltaic conversion and electromechanical transduction are two common energy-harvesting mechanisms based on, respectively, semiconducting junctions and piezoelectric insulators. However, the different material families on which these transduction phenomena are based complicate their integration into single devices. Here we demonstrate that halide perovskites, a family of highly efficient photovoltaic materials
1
–
3
, display a photoflexoelectric effect whereby, under a combination of illumination and oscillation driven by a piezoelectric actuator, they generate orders of magnitude higher flexoelectricity than in the dark. We also show that photoflexoelectricity is not exclusive to halides but a general property of semiconductors that potentially enables simultaneous electromechanical and photovoltaic transduction and harvesting in unison from multiple energy inputs.
Flexoelectricity is the ability of materials to generate electricity upon bending. Here it is demonstrated that adding light to mechanical oscillation enhances effective flexoelectric coefficients by orders of magnitude, with the halide perovskites showing the largest coefficients. |
doi_str_mv | 10.1038/s41563-020-0659-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2393037390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407309285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-a7461f762bc5bb925e47160a94329cc33a075613cdf817f11b1ee837b97de6d03</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRbK3-AC8S8OIldmc_s0cpfkFBD3peks3EpqZJ3U3E_ntTUhUEPc3APPPO8BByCvQSKE-mQYBUPKaMxlRJE2_2yBiEVrFQiu7vegDGRuQohCWlDKRUh2TEGQfOlByT6eOiaZuiwo8GK3StL12ERdF3UVlHi7Qqc4zW6Jv38Fq2GI7JQZFWAU92dUKeb66fZnfx_OH2fnY1j51IWBunWigotGKZk1lmmEShQdHUCM6Mc5ynVEsF3OVFAroAyAAx4TozOkeVUz4hF0Pu2jdvHYbWrsrgsKrSGpsuWMYNp1xzs0XPf6HLpvN1_51lQguT0ETr_ymqOTUskT0FA-V8E4LHwq59uUr9xgK1W-d2cG5753br3G76nbNdcpetMP_e-JLcA2wAQj-qX9D_nP479RPkw4n4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407309285</pqid></control><display><type>article</type><title>Photoflexoelectric effect in halide perovskites</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Shu, Longlong ; Ke, Shanming ; Fei, Linfeng ; Huang, Wenbin ; Wang, Zhiguo ; Gong, Jinhui ; Jiang, Xiaoning ; Wang, Li ; Li, Fei ; Lei, Shuijin ; Rao, Zhenggang ; Zhou, Yangbo ; Zheng, Ren-Kui ; Yao, Xi ; Wang, Yu ; Stengel, Massimiliano ; Catalan, Gustau</creator><creatorcontrib>Shu, Longlong ; Ke, Shanming ; Fei, Linfeng ; Huang, Wenbin ; Wang, Zhiguo ; Gong, Jinhui ; Jiang, Xiaoning ; Wang, Li ; Li, Fei ; Lei, Shuijin ; Rao, Zhenggang ; Zhou, Yangbo ; Zheng, Ren-Kui ; Yao, Xi ; Wang, Yu ; Stengel, Massimiliano ; Catalan, Gustau</creatorcontrib><description>Harvesting environmental energy to generate electricity is a key scientific and technological endeavour of our time. Photovoltaic conversion and electromechanical transduction are two common energy-harvesting mechanisms based on, respectively, semiconducting junctions and piezoelectric insulators. However, the different material families on which these transduction phenomena are based complicate their integration into single devices. Here we demonstrate that halide perovskites, a family of highly efficient photovoltaic materials
1
–
3
, display a photoflexoelectric effect whereby, under a combination of illumination and oscillation driven by a piezoelectric actuator, they generate orders of magnitude higher flexoelectricity than in the dark. We also show that photoflexoelectricity is not exclusive to halides but a general property of semiconductors that potentially enables simultaneous electromechanical and photovoltaic transduction and harvesting in unison from multiple energy inputs.
Flexoelectricity is the ability of materials to generate electricity upon bending. Here it is demonstrated that adding light to mechanical oscillation enhances effective flexoelectric coefficients by orders of magnitude, with the halide perovskites showing the largest coefficients.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-020-0659-y</identifier><identifier>PMID: 32313265</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005 ; 639/301/119/996 ; 639/301/299/946 ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrical junctions ; Electricity ; Electrodes ; Energy harvesting ; Gold ; Halides ; Insulators ; Laboratories ; Letter ; Light ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Perovskites ; Photovoltaic conversion ; Photovoltaics ; Piezoelectric actuators ; Piezoelectricity</subject><ispartof>Nature materials, 2020-06, Vol.19 (6), p.605-609</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-a7461f762bc5bb925e47160a94329cc33a075613cdf817f11b1ee837b97de6d03</citedby><cites>FETCH-LOGICAL-c482t-a7461f762bc5bb925e47160a94329cc33a075613cdf817f11b1ee837b97de6d03</cites><orcidid>0000-0002-7121-1652 ; 0000-0002-4572-0322 ; 0000-0003-3204-1416 ; 0000-0001-7329-0019 ; 0000-0003-0214-4828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-020-0659-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-020-0659-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32313265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shu, Longlong</creatorcontrib><creatorcontrib>Ke, Shanming</creatorcontrib><creatorcontrib>Fei, Linfeng</creatorcontrib><creatorcontrib>Huang, Wenbin</creatorcontrib><creatorcontrib>Wang, Zhiguo</creatorcontrib><creatorcontrib>Gong, Jinhui</creatorcontrib><creatorcontrib>Jiang, Xiaoning</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Lei, Shuijin</creatorcontrib><creatorcontrib>Rao, Zhenggang</creatorcontrib><creatorcontrib>Zhou, Yangbo</creatorcontrib><creatorcontrib>Zheng, Ren-Kui</creatorcontrib><creatorcontrib>Yao, Xi</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Stengel, Massimiliano</creatorcontrib><creatorcontrib>Catalan, Gustau</creatorcontrib><title>Photoflexoelectric effect in halide perovskites</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Harvesting environmental energy to generate electricity is a key scientific and technological endeavour of our time. Photovoltaic conversion and electromechanical transduction are two common energy-harvesting mechanisms based on, respectively, semiconducting junctions and piezoelectric insulators. However, the different material families on which these transduction phenomena are based complicate their integration into single devices. Here we demonstrate that halide perovskites, a family of highly efficient photovoltaic materials
1
–
3
, display a photoflexoelectric effect whereby, under a combination of illumination and oscillation driven by a piezoelectric actuator, they generate orders of magnitude higher flexoelectricity than in the dark. We also show that photoflexoelectricity is not exclusive to halides but a general property of semiconductors that potentially enables simultaneous electromechanical and photovoltaic transduction and harvesting in unison from multiple energy inputs.
Flexoelectricity is the ability of materials to generate electricity upon bending. Here it is demonstrated that adding light to mechanical oscillation enhances effective flexoelectric coefficients by orders of magnitude, with the halide perovskites showing the largest coefficients.</description><subject>639/301/1005</subject><subject>639/301/119/996</subject><subject>639/301/299/946</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrical junctions</subject><subject>Electricity</subject><subject>Electrodes</subject><subject>Energy harvesting</subject><subject>Gold</subject><subject>Halides</subject><subject>Insulators</subject><subject>Laboratories</subject><subject>Letter</subject><subject>Light</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Perovskites</subject><subject>Photovoltaic conversion</subject><subject>Photovoltaics</subject><subject>Piezoelectric actuators</subject><subject>Piezoelectricity</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1Lw0AQhhdRbK3-AC8S8OIldmc_s0cpfkFBD3peks3EpqZJ3U3E_ntTUhUEPc3APPPO8BByCvQSKE-mQYBUPKaMxlRJE2_2yBiEVrFQiu7vegDGRuQohCWlDKRUh2TEGQfOlByT6eOiaZuiwo8GK3StL12ERdF3UVlHi7Qqc4zW6Jv38Fq2GI7JQZFWAU92dUKeb66fZnfx_OH2fnY1j51IWBunWigotGKZk1lmmEShQdHUCM6Mc5ynVEsF3OVFAroAyAAx4TozOkeVUz4hF0Pu2jdvHYbWrsrgsKrSGpsuWMYNp1xzs0XPf6HLpvN1_51lQguT0ETr_ymqOTUskT0FA-V8E4LHwq59uUr9xgK1W-d2cG5753br3G76nbNdcpetMP_e-JLcA2wAQj-qX9D_nP479RPkw4n4</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Shu, Longlong</creator><creator>Ke, Shanming</creator><creator>Fei, Linfeng</creator><creator>Huang, Wenbin</creator><creator>Wang, Zhiguo</creator><creator>Gong, Jinhui</creator><creator>Jiang, Xiaoning</creator><creator>Wang, Li</creator><creator>Li, Fei</creator><creator>Lei, Shuijin</creator><creator>Rao, Zhenggang</creator><creator>Zhou, Yangbo</creator><creator>Zheng, Ren-Kui</creator><creator>Yao, Xi</creator><creator>Wang, Yu</creator><creator>Stengel, Massimiliano</creator><creator>Catalan, Gustau</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7121-1652</orcidid><orcidid>https://orcid.org/0000-0002-4572-0322</orcidid><orcidid>https://orcid.org/0000-0003-3204-1416</orcidid><orcidid>https://orcid.org/0000-0001-7329-0019</orcidid><orcidid>https://orcid.org/0000-0003-0214-4828</orcidid></search><sort><creationdate>20200601</creationdate><title>Photoflexoelectric effect in halide perovskites</title><author>Shu, Longlong ; Ke, Shanming ; Fei, Linfeng ; Huang, Wenbin ; Wang, Zhiguo ; Gong, Jinhui ; Jiang, Xiaoning ; Wang, Li ; Li, Fei ; Lei, Shuijin ; Rao, Zhenggang ; Zhou, Yangbo ; Zheng, Ren-Kui ; Yao, Xi ; Wang, Yu ; Stengel, Massimiliano ; Catalan, Gustau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-a7461f762bc5bb925e47160a94329cc33a075613cdf817f11b1ee837b97de6d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1005</topic><topic>639/301/119/996</topic><topic>639/301/299/946</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrical junctions</topic><topic>Electricity</topic><topic>Electrodes</topic><topic>Energy harvesting</topic><topic>Gold</topic><topic>Halides</topic><topic>Insulators</topic><topic>Laboratories</topic><topic>Letter</topic><topic>Light</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Perovskites</topic><topic>Photovoltaic conversion</topic><topic>Photovoltaics</topic><topic>Piezoelectric actuators</topic><topic>Piezoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Longlong</creatorcontrib><creatorcontrib>Ke, Shanming</creatorcontrib><creatorcontrib>Fei, Linfeng</creatorcontrib><creatorcontrib>Huang, Wenbin</creatorcontrib><creatorcontrib>Wang, Zhiguo</creatorcontrib><creatorcontrib>Gong, Jinhui</creatorcontrib><creatorcontrib>Jiang, Xiaoning</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Lei, Shuijin</creatorcontrib><creatorcontrib>Rao, Zhenggang</creatorcontrib><creatorcontrib>Zhou, Yangbo</creatorcontrib><creatorcontrib>Zheng, Ren-Kui</creatorcontrib><creatorcontrib>Yao, Xi</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Stengel, Massimiliano</creatorcontrib><creatorcontrib>Catalan, Gustau</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Longlong</au><au>Ke, Shanming</au><au>Fei, Linfeng</au><au>Huang, Wenbin</au><au>Wang, Zhiguo</au><au>Gong, Jinhui</au><au>Jiang, Xiaoning</au><au>Wang, Li</au><au>Li, Fei</au><au>Lei, Shuijin</au><au>Rao, Zhenggang</au><au>Zhou, Yangbo</au><au>Zheng, Ren-Kui</au><au>Yao, Xi</au><au>Wang, Yu</au><au>Stengel, Massimiliano</au><au>Catalan, Gustau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoflexoelectric effect in halide perovskites</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>19</volume><issue>6</issue><spage>605</spage><epage>609</epage><pages>605-609</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Harvesting environmental energy to generate electricity is a key scientific and technological endeavour of our time. Photovoltaic conversion and electromechanical transduction are two common energy-harvesting mechanisms based on, respectively, semiconducting junctions and piezoelectric insulators. However, the different material families on which these transduction phenomena are based complicate their integration into single devices. Here we demonstrate that halide perovskites, a family of highly efficient photovoltaic materials
1
–
3
, display a photoflexoelectric effect whereby, under a combination of illumination and oscillation driven by a piezoelectric actuator, they generate orders of magnitude higher flexoelectricity than in the dark. We also show that photoflexoelectricity is not exclusive to halides but a general property of semiconductors that potentially enables simultaneous electromechanical and photovoltaic transduction and harvesting in unison from multiple energy inputs.
Flexoelectricity is the ability of materials to generate electricity upon bending. Here it is demonstrated that adding light to mechanical oscillation enhances effective flexoelectric coefficients by orders of magnitude, with the halide perovskites showing the largest coefficients.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32313265</pmid><doi>10.1038/s41563-020-0659-y</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7121-1652</orcidid><orcidid>https://orcid.org/0000-0002-4572-0322</orcidid><orcidid>https://orcid.org/0000-0003-3204-1416</orcidid><orcidid>https://orcid.org/0000-0001-7329-0019</orcidid><orcidid>https://orcid.org/0000-0003-0214-4828</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2020-06, Vol.19 (6), p.605-609 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_2393037390 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 639/301/1005 639/301/119/996 639/301/299/946 Biomaterials Chemistry and Materials Science Condensed Matter Physics Electrical junctions Electricity Electrodes Energy harvesting Gold Halides Insulators Laboratories Letter Light Materials Science Nanotechnology Optical and Electronic Materials Perovskites Photovoltaic conversion Photovoltaics Piezoelectric actuators Piezoelectricity |
title | Photoflexoelectric effect in halide perovskites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoflexoelectric%20effect%20in%20halide%20perovskites&rft.jtitle=Nature%20materials&rft.au=Shu,%20Longlong&rft.date=2020-06-01&rft.volume=19&rft.issue=6&rft.spage=605&rft.epage=609&rft.pages=605-609&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-020-0659-y&rft_dat=%3Cproquest_cross%3E2407309285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407309285&rft_id=info:pmid/32313265&rfr_iscdi=true |