Morphing electronics enable neuromodulation in growing tissue
Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases 1 – 3 . However, their fixed dimensions cannot accommodate rapid tissue growth 4 , 5 and may impair development 6 . For infants, children and adolescents, once implanted devices are outgrown, additi...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2020-09, Vol.38 (9), p.1031-1036 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1036 |
---|---|
container_issue | 9 |
container_start_page | 1031 |
container_title | Nature biotechnology |
container_volume | 38 |
creator | Liu, Yuxin Li, Jinxing Song, Shang Kang, Jiheong Tsao, Yuchi Chen, Shucheng Mottini, Vittorio McConnell, Kelly Xu, Wenhui Zheng, Yu-Qing Tok, Jeffrey B.-H. George, Paul M. Bao, Zhenan |
description | Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases
1
–
3
. However, their fixed dimensions cannot accommodate rapid tissue growth
4
,
5
and may impair development
6
. For infants, children and adolescents, once implanted devices are outgrown, additional surgeries are often needed for device replacement, leading to repeated interventions and complications
6
–
8
. Here, we address this limitation with morphing electronics, which adapt to in vivo nerve tissue growth with minimal mechanical constraint. We design and fabricate multilayered morphing electronics, consisting of viscoplastic electrodes and a strain sensor that eliminate the stress at the interface between the electronics and growing tissue. The ability of morphing electronics to self-heal during implantation surgery allows a reconfigurable and seamless neural interface. During the fastest growth period in rats, morphing electronics caused minimal damage to the rat nerve, which grows 2.4-fold in diameter, and allowed chronic electrical stimulation and monitoring for 2 months without disruption of functional behavior. Morphing electronics offers a path toward growth-adaptive pediatric electronic medicine.
Viscoplastic electronic devices adapt as nerves enlarge in growing animals. |
doi_str_mv | 10.1038/s41587-020-0495-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2393037374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634552819</galeid><sourcerecordid>A634552819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c767t-a7f2bf4ac952f0e4a4659ebebd213d7d367705c538775760b8a0779623543d2b3</originalsourceid><addsrcrecordid>eNqNkm1r1TAYhosobjv6A_wiBwSZaGfe035QGAdfBpOBb19Dmj7tyehJjknr9N-b2nm2ipMRSEJy3U-ecN9Z9gijI4xo8TIyzAuZI4JyxEqekzvZPuZM5FiU4m7ao_EWc7GXHcR4jhASTIj72R4lFFNc0v3s1Qcftmvr2iV0YPrgnTVxCU5XHSwdDMFvfD10urfeLa1btsFfjHRvYxzgQXav0V2Eh5frIvvy9s3n1fv89Ozdyer4NDdSyD7XsiFVw7QpOWkQMM0EL6GCqiaY1rKmQkrEDaeFlFwKVBUaSVkKQjmjNanoIns91d0O1QZqA64PulPbYDc6_FReWzW_cXatWv9dyQJxzstU4PCyQPDfBoi92thooOu0Az9ERWhJEZVUsoQ--Qs990Nw6XuKsPQdWnKE_k8xRDBmDF9Rre5AWdf41J0Zn1bHgjLOSYHH5o7-QaVRw8Ya76Cx6XwmeDoTJKaHH32rhxjVHHx2M3jy6ePt2bOvc_bFNbYaonUQ0xRtu-7jJJnheMJN8DEGaHbOYaTGJKspySolWY1JTn4sssfXLd8p_kQ3Ac8n4AIq30RjwRnYYSnrnJSkLJJZCI1OFLenV7b_HfiVH1yfpGSSxoS7FsKV1Te3_wu4DRmH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440211441</pqid></control><display><type>article</type><title>Morphing electronics enable neuromodulation in growing tissue</title><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Liu, Yuxin ; Li, Jinxing ; Song, Shang ; Kang, Jiheong ; Tsao, Yuchi ; Chen, Shucheng ; Mottini, Vittorio ; McConnell, Kelly ; Xu, Wenhui ; Zheng, Yu-Qing ; Tok, Jeffrey B.-H. ; George, Paul M. ; Bao, Zhenan</creator><creatorcontrib>Liu, Yuxin ; Li, Jinxing ; Song, Shang ; Kang, Jiheong ; Tsao, Yuchi ; Chen, Shucheng ; Mottini, Vittorio ; McConnell, Kelly ; Xu, Wenhui ; Zheng, Yu-Qing ; Tok, Jeffrey B.-H. ; George, Paul M. ; Bao, Zhenan</creatorcontrib><description>Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases
1
–
3
. However, their fixed dimensions cannot accommodate rapid tissue growth
4
,
5
and may impair development
6
. For infants, children and adolescents, once implanted devices are outgrown, additional surgeries are often needed for device replacement, leading to repeated interventions and complications
6
–
8
. Here, we address this limitation with morphing electronics, which adapt to in vivo nerve tissue growth with minimal mechanical constraint. We design and fabricate multilayered morphing electronics, consisting of viscoplastic electrodes and a strain sensor that eliminate the stress at the interface between the electronics and growing tissue. The ability of morphing electronics to self-heal during implantation surgery allows a reconfigurable and seamless neural interface. During the fastest growth period in rats, morphing electronics caused minimal damage to the rat nerve, which grows 2.4-fold in diameter, and allowed chronic electrical stimulation and monitoring for 2 months without disruption of functional behavior. Morphing electronics offers a path toward growth-adaptive pediatric electronic medicine.
Viscoplastic electronic devices adapt as nerves enlarge in growing animals.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-020-0495-2</identifier><identifier>PMID: 32313193</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>639/166/985 ; 639/301/1005/1007 ; 639/301/923/1028 ; Adaptive control ; Agriculture ; Animals ; Biocompatible Materials - chemistry ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedical materials ; Biomedicine ; Biotechnology ; Biotechnology & Applied Microbiology ; Care and treatment ; Children ; Computer applications ; Design and construction ; Electrical stimuli ; Electronic devices ; Electronic equipment ; Electronics ; Electronics, Medical - instrumentation ; Electronics, Medical - methods ; Growth ; Health aspects ; Implantable Neurostimulators ; Implantation ; Implants ; Implants, Artificial ; Infants ; Letter ; Life Sciences ; Life Sciences & Biomedicine ; Methods ; Morphing ; Nerves ; Nervous system ; Nervous system diseases ; Nervous tissues ; Neural prostheses ; Neural stimulation ; Neuromodulation ; Neurophysiology ; Pediatrics ; Polymers - chemistry ; Prosthesis ; Rats ; Sciatic Nerve - physiology ; Science & Technology ; Sensors ; Surgery ; Surgical implants ; Tissues ; Viscoelastic Substances - chemistry</subject><ispartof>Nature biotechnology, 2020-09, Vol.38 (9), p.1031-1036</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>221</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000529298500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c767t-a7f2bf4ac952f0e4a4659ebebd213d7d367705c538775760b8a0779623543d2b3</citedby><cites>FETCH-LOGICAL-c767t-a7f2bf4ac952f0e4a4659ebebd213d7d367705c538775760b8a0779623543d2b3</cites><orcidid>0000-0002-0972-1715 ; 0000-0002-2794-0663 ; 0000-0001-8552-3721 ; 0000-0003-4446-5494 ; 0000-0003-0623-9402 ; 0000-0002-1080-098X ; 0000-0002-8637-5086 ; 0000-0002-5888-342X ; 0000-0002-6853-0548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27933,27934,28257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32313193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yuxin</creatorcontrib><creatorcontrib>Li, Jinxing</creatorcontrib><creatorcontrib>Song, Shang</creatorcontrib><creatorcontrib>Kang, Jiheong</creatorcontrib><creatorcontrib>Tsao, Yuchi</creatorcontrib><creatorcontrib>Chen, Shucheng</creatorcontrib><creatorcontrib>Mottini, Vittorio</creatorcontrib><creatorcontrib>McConnell, Kelly</creatorcontrib><creatorcontrib>Xu, Wenhui</creatorcontrib><creatorcontrib>Zheng, Yu-Qing</creatorcontrib><creatorcontrib>Tok, Jeffrey B.-H.</creatorcontrib><creatorcontrib>George, Paul M.</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><title>Morphing electronics enable neuromodulation in growing tissue</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>NAT BIOTECHNOL</addtitle><addtitle>Nat Biotechnol</addtitle><description>Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases
1
–
3
. However, their fixed dimensions cannot accommodate rapid tissue growth
4
,
5
and may impair development
6
. For infants, children and adolescents, once implanted devices are outgrown, additional surgeries are often needed for device replacement, leading to repeated interventions and complications
6
–
8
. Here, we address this limitation with morphing electronics, which adapt to in vivo nerve tissue growth with minimal mechanical constraint. We design and fabricate multilayered morphing electronics, consisting of viscoplastic electrodes and a strain sensor that eliminate the stress at the interface between the electronics and growing tissue. The ability of morphing electronics to self-heal during implantation surgery allows a reconfigurable and seamless neural interface. During the fastest growth period in rats, morphing electronics caused minimal damage to the rat nerve, which grows 2.4-fold in diameter, and allowed chronic electrical stimulation and monitoring for 2 months without disruption of functional behavior. Morphing electronics offers a path toward growth-adaptive pediatric electronic medicine.
Viscoplastic electronic devices adapt as nerves enlarge in growing animals.</description><subject>639/166/985</subject><subject>639/301/1005/1007</subject><subject>639/301/923/1028</subject><subject>Adaptive control</subject><subject>Agriculture</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedical materials</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Biotechnology & Applied Microbiology</subject><subject>Care and treatment</subject><subject>Children</subject><subject>Computer applications</subject><subject>Design and construction</subject><subject>Electrical stimuli</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Electronics</subject><subject>Electronics, Medical - instrumentation</subject><subject>Electronics, Medical - methods</subject><subject>Growth</subject><subject>Health aspects</subject><subject>Implantable Neurostimulators</subject><subject>Implantation</subject><subject>Implants</subject><subject>Implants, Artificial</subject><subject>Infants</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Life Sciences & Biomedicine</subject><subject>Methods</subject><subject>Morphing</subject><subject>Nerves</subject><subject>Nervous system</subject><subject>Nervous system diseases</subject><subject>Nervous tissues</subject><subject>Neural prostheses</subject><subject>Neural stimulation</subject><subject>Neuromodulation</subject><subject>Neurophysiology</subject><subject>Pediatrics</subject><subject>Polymers - chemistry</subject><subject>Prosthesis</subject><subject>Rats</subject><subject>Sciatic Nerve - physiology</subject><subject>Science & Technology</subject><subject>Sensors</subject><subject>Surgery</subject><subject>Surgical implants</subject><subject>Tissues</subject><subject>Viscoelastic Substances - chemistry</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkm1r1TAYhosobjv6A_wiBwSZaGfe035QGAdfBpOBb19Dmj7tyehJjknr9N-b2nm2ipMRSEJy3U-ecN9Z9gijI4xo8TIyzAuZI4JyxEqekzvZPuZM5FiU4m7ao_EWc7GXHcR4jhASTIj72R4lFFNc0v3s1Qcftmvr2iV0YPrgnTVxCU5XHSwdDMFvfD10urfeLa1btsFfjHRvYxzgQXav0V2Eh5frIvvy9s3n1fv89Ozdyer4NDdSyD7XsiFVw7QpOWkQMM0EL6GCqiaY1rKmQkrEDaeFlFwKVBUaSVkKQjmjNanoIns91d0O1QZqA64PulPbYDc6_FReWzW_cXatWv9dyQJxzstU4PCyQPDfBoi92thooOu0Az9ERWhJEZVUsoQ--Qs990Nw6XuKsPQdWnKE_k8xRDBmDF9Rre5AWdf41J0Zn1bHgjLOSYHH5o7-QaVRw8Ya76Cx6XwmeDoTJKaHH32rhxjVHHx2M3jy6ePt2bOvc_bFNbYaonUQ0xRtu-7jJJnheMJN8DEGaHbOYaTGJKspySolWY1JTn4sssfXLd8p_kQ3Ac8n4AIq30RjwRnYYSnrnJSkLJJZCI1OFLenV7b_HfiVH1yfpGSSxoS7FsKV1Te3_wu4DRmH</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Liu, Yuxin</creator><creator>Li, Jinxing</creator><creator>Song, Shang</creator><creator>Kang, Jiheong</creator><creator>Tsao, Yuchi</creator><creator>Chen, Shucheng</creator><creator>Mottini, Vittorio</creator><creator>McConnell, Kelly</creator><creator>Xu, Wenhui</creator><creator>Zheng, Yu-Qing</creator><creator>Tok, Jeffrey B.-H.</creator><creator>George, Paul M.</creator><creator>Bao, Zhenan</creator><general>Nature Publishing Group US</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0972-1715</orcidid><orcidid>https://orcid.org/0000-0002-2794-0663</orcidid><orcidid>https://orcid.org/0000-0001-8552-3721</orcidid><orcidid>https://orcid.org/0000-0003-4446-5494</orcidid><orcidid>https://orcid.org/0000-0003-0623-9402</orcidid><orcidid>https://orcid.org/0000-0002-1080-098X</orcidid><orcidid>https://orcid.org/0000-0002-8637-5086</orcidid><orcidid>https://orcid.org/0000-0002-5888-342X</orcidid><orcidid>https://orcid.org/0000-0002-6853-0548</orcidid></search><sort><creationdate>20200901</creationdate><title>Morphing electronics enable neuromodulation in growing tissue</title><author>Liu, Yuxin ; Li, Jinxing ; Song, Shang ; Kang, Jiheong ; Tsao, Yuchi ; Chen, Shucheng ; Mottini, Vittorio ; McConnell, Kelly ; Xu, Wenhui ; Zheng, Yu-Qing ; Tok, Jeffrey B.-H. ; George, Paul M. ; Bao, Zhenan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c767t-a7f2bf4ac952f0e4a4659ebebd213d7d367705c538775760b8a0779623543d2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/166/985</topic><topic>639/301/1005/1007</topic><topic>639/301/923/1028</topic><topic>Adaptive control</topic><topic>Agriculture</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedical materials</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Biotechnology & Applied Microbiology</topic><topic>Care and treatment</topic><topic>Children</topic><topic>Computer applications</topic><topic>Design and construction</topic><topic>Electrical stimuli</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Electronics</topic><topic>Electronics, Medical - instrumentation</topic><topic>Electronics, Medical - methods</topic><topic>Growth</topic><topic>Health aspects</topic><topic>Implantable Neurostimulators</topic><topic>Implantation</topic><topic>Implants</topic><topic>Implants, Artificial</topic><topic>Infants</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Life Sciences & Biomedicine</topic><topic>Methods</topic><topic>Morphing</topic><topic>Nerves</topic><topic>Nervous system</topic><topic>Nervous system diseases</topic><topic>Nervous tissues</topic><topic>Neural prostheses</topic><topic>Neural stimulation</topic><topic>Neuromodulation</topic><topic>Neurophysiology</topic><topic>Pediatrics</topic><topic>Polymers - chemistry</topic><topic>Prosthesis</topic><topic>Rats</topic><topic>Sciatic Nerve - physiology</topic><topic>Science & Technology</topic><topic>Sensors</topic><topic>Surgery</topic><topic>Surgical implants</topic><topic>Tissues</topic><topic>Viscoelastic Substances - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuxin</creatorcontrib><creatorcontrib>Li, Jinxing</creatorcontrib><creatorcontrib>Song, Shang</creatorcontrib><creatorcontrib>Kang, Jiheong</creatorcontrib><creatorcontrib>Tsao, Yuchi</creatorcontrib><creatorcontrib>Chen, Shucheng</creatorcontrib><creatorcontrib>Mottini, Vittorio</creatorcontrib><creatorcontrib>McConnell, Kelly</creatorcontrib><creatorcontrib>Xu, Wenhui</creatorcontrib><creatorcontrib>Zheng, Yu-Qing</creatorcontrib><creatorcontrib>Tok, Jeffrey B.-H.</creatorcontrib><creatorcontrib>George, Paul M.</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuxin</au><au>Li, Jinxing</au><au>Song, Shang</au><au>Kang, Jiheong</au><au>Tsao, Yuchi</au><au>Chen, Shucheng</au><au>Mottini, Vittorio</au><au>McConnell, Kelly</au><au>Xu, Wenhui</au><au>Zheng, Yu-Qing</au><au>Tok, Jeffrey B.-H.</au><au>George, Paul M.</au><au>Bao, Zhenan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphing electronics enable neuromodulation in growing tissue</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><stitle>NAT BIOTECHNOL</stitle><addtitle>Nat Biotechnol</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>38</volume><issue>9</issue><spage>1031</spage><epage>1036</epage><pages>1031-1036</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases
1
–
3
. However, their fixed dimensions cannot accommodate rapid tissue growth
4
,
5
and may impair development
6
. For infants, children and adolescents, once implanted devices are outgrown, additional surgeries are often needed for device replacement, leading to repeated interventions and complications
6
–
8
. Here, we address this limitation with morphing electronics, which adapt to in vivo nerve tissue growth with minimal mechanical constraint. We design and fabricate multilayered morphing electronics, consisting of viscoplastic electrodes and a strain sensor that eliminate the stress at the interface between the electronics and growing tissue. The ability of morphing electronics to self-heal during implantation surgery allows a reconfigurable and seamless neural interface. During the fastest growth period in rats, morphing electronics caused minimal damage to the rat nerve, which grows 2.4-fold in diameter, and allowed chronic electrical stimulation and monitoring for 2 months without disruption of functional behavior. Morphing electronics offers a path toward growth-adaptive pediatric electronic medicine.
Viscoplastic electronic devices adapt as nerves enlarge in growing animals.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32313193</pmid><doi>10.1038/s41587-020-0495-2</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0972-1715</orcidid><orcidid>https://orcid.org/0000-0002-2794-0663</orcidid><orcidid>https://orcid.org/0000-0001-8552-3721</orcidid><orcidid>https://orcid.org/0000-0003-4446-5494</orcidid><orcidid>https://orcid.org/0000-0003-0623-9402</orcidid><orcidid>https://orcid.org/0000-0002-1080-098X</orcidid><orcidid>https://orcid.org/0000-0002-8637-5086</orcidid><orcidid>https://orcid.org/0000-0002-5888-342X</orcidid><orcidid>https://orcid.org/0000-0002-6853-0548</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2020-09, Vol.38 (9), p.1031-1036 |
issn | 1087-0156 1546-1696 |
language | eng |
recordid | cdi_proquest_miscellaneous_2393037374 |
source | MEDLINE; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Nature; Alma/SFX Local Collection |
subjects | 639/166/985 639/301/1005/1007 639/301/923/1028 Adaptive control Agriculture Animals Biocompatible Materials - chemistry Bioinformatics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedical materials Biomedicine Biotechnology Biotechnology & Applied Microbiology Care and treatment Children Computer applications Design and construction Electrical stimuli Electronic devices Electronic equipment Electronics Electronics, Medical - instrumentation Electronics, Medical - methods Growth Health aspects Implantable Neurostimulators Implantation Implants Implants, Artificial Infants Letter Life Sciences Life Sciences & Biomedicine Methods Morphing Nerves Nervous system Nervous system diseases Nervous tissues Neural prostheses Neural stimulation Neuromodulation Neurophysiology Pediatrics Polymers - chemistry Prosthesis Rats Sciatic Nerve - physiology Science & Technology Sensors Surgery Surgical implants Tissues Viscoelastic Substances - chemistry |
title | Morphing electronics enable neuromodulation in growing tissue |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-28T14%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphing%20electronics%20enable%20neuromodulation%20in%20growing%20tissue&rft.jtitle=Nature%20biotechnology&rft.au=Liu,%20Yuxin&rft.date=2020-09-01&rft.volume=38&rft.issue=9&rft.spage=1031&rft.epage=1036&rft.pages=1031-1036&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-020-0495-2&rft_dat=%3Cgale_proqu%3EA634552819%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440211441&rft_id=info:pmid/32313193&rft_galeid=A634552819&rfr_iscdi=true |