Finite-time synchronization of memristor neural networks via interval matrix method

In this paper, the finite-time synchronization problems of two types of driven-response memristor neural networks (MNNs) without time-delay and with time-varying delays are investigated via interval matrix method, respectively. Based on interval matrix transformation, the driven-response MNNs are tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2020-07, Vol.127, p.7-18
Hauptverfasser: Wei, Fei, Chen, Guici, Wang, Wenbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue
container_start_page 7
container_title Neural networks
container_volume 127
creator Wei, Fei
Chen, Guici
Wang, Wenbo
description In this paper, the finite-time synchronization problems of two types of driven-response memristor neural networks (MNNs) without time-delay and with time-varying delays are investigated via interval matrix method, respectively. Based on interval matrix transformation, the driven-response MNNs are transformed into a kind of system with interval parameters, which is different from the previous research approaches. Several sufficient conditions in terms of linear matrix inequalities (LMIs) are driven to guarantee finite-time synchronization for MNNs. Correspondingly, two types of nonlinear feedback controllers are designed. Meanwhile, the upper-bounded of the settling time functions are estimated. Finally, two numerical examples with simulations are given to illustrate the correctness of the theoretical results and the effectiveness of the proposed controllers. •The MNNs without time-delay and with time-varying delays are transformed into a kind of system with interval parameters, which overcomes the influence of switching jumping parameters.•Two different kinds of nonlinear feedback controllers are constructed by solving several LMIs, which is independent and dependent on time-delay, respectively.•The interval matrix method is used to investigate the finite-time synchronization of MNNs, which reduces conservativeness and easily constructs solvable nonlinear finite-time synchronization controllers.
doi_str_mv 10.1016/j.neunet.2020.04.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2392460876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608020301234</els_id><sourcerecordid>2392460876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-682cad95fab0cdd927a7d37b54ad16cfa904ef8092e7d18870e197aa7057c4853</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVoiJ20_yCUPfay29GHV9pLoZjmAww5JDkLWZolcrySK8lu018fBac99jQwPDPvzEPIJYWOAu2_brqA-4ClY8CgA9EB8BMyp0oOLZOKfSBzUANve1AwI-c5bwCgV4KfkRlnHBaSijm5v_LBF2yLn7DJL8E-pRj8H1N8DE0cmwmn5HOJqalpyWxrKb9ies7NwZvGh4LpULuTKcn_rnR5iu4jOR3NNuOn93pBHq9-PCxv2tXd9e3y-6q1vGel7RWzxg2L0azBOjcwaaTjcr0QxtHejmYAgaOCgaF0VCkJSAdpjKynW6EW_IJ8Oe7dpfhzj7noyWeL260JGPdZMz4wUd-XfUXFEbUp5pxw1LvkJ5NeNAX9plNv9FGnftOpQeiqs459fk_Yryd0_4b--qvAtyOA9c-Dx6Sz9RgsOp_QFu2i_3_CKxhlidg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392460876</pqid></control><display><type>article</type><title>Finite-time synchronization of memristor neural networks via interval matrix method</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wei, Fei ; Chen, Guici ; Wang, Wenbo</creator><creatorcontrib>Wei, Fei ; Chen, Guici ; Wang, Wenbo</creatorcontrib><description>In this paper, the finite-time synchronization problems of two types of driven-response memristor neural networks (MNNs) without time-delay and with time-varying delays are investigated via interval matrix method, respectively. Based on interval matrix transformation, the driven-response MNNs are transformed into a kind of system with interval parameters, which is different from the previous research approaches. Several sufficient conditions in terms of linear matrix inequalities (LMIs) are driven to guarantee finite-time synchronization for MNNs. Correspondingly, two types of nonlinear feedback controllers are designed. Meanwhile, the upper-bounded of the settling time functions are estimated. Finally, two numerical examples with simulations are given to illustrate the correctness of the theoretical results and the effectiveness of the proposed controllers. •The MNNs without time-delay and with time-varying delays are transformed into a kind of system with interval parameters, which overcomes the influence of switching jumping parameters.•Two different kinds of nonlinear feedback controllers are constructed by solving several LMIs, which is independent and dependent on time-delay, respectively.•The interval matrix method is used to investigate the finite-time synchronization of MNNs, which reduces conservativeness and easily constructs solvable nonlinear finite-time synchronization controllers.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2020.04.003</identifier><identifier>PMID: 32305714</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Finite-time synchronization ; Interval matrix method ; Memristor neural networks ; Nonlinear feedback controllers</subject><ispartof>Neural networks, 2020-07, Vol.127, p.7-18</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-682cad95fab0cdd927a7d37b54ad16cfa904ef8092e7d18870e197aa7057c4853</citedby><cites>FETCH-LOGICAL-c362t-682cad95fab0cdd927a7d37b54ad16cfa904ef8092e7d18870e197aa7057c4853</cites><orcidid>0000-0002-3069-0829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2020.04.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32305714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Fei</creatorcontrib><creatorcontrib>Chen, Guici</creatorcontrib><creatorcontrib>Wang, Wenbo</creatorcontrib><title>Finite-time synchronization of memristor neural networks via interval matrix method</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>In this paper, the finite-time synchronization problems of two types of driven-response memristor neural networks (MNNs) without time-delay and with time-varying delays are investigated via interval matrix method, respectively. Based on interval matrix transformation, the driven-response MNNs are transformed into a kind of system with interval parameters, which is different from the previous research approaches. Several sufficient conditions in terms of linear matrix inequalities (LMIs) are driven to guarantee finite-time synchronization for MNNs. Correspondingly, two types of nonlinear feedback controllers are designed. Meanwhile, the upper-bounded of the settling time functions are estimated. Finally, two numerical examples with simulations are given to illustrate the correctness of the theoretical results and the effectiveness of the proposed controllers. •The MNNs without time-delay and with time-varying delays are transformed into a kind of system with interval parameters, which overcomes the influence of switching jumping parameters.•Two different kinds of nonlinear feedback controllers are constructed by solving several LMIs, which is independent and dependent on time-delay, respectively.•The interval matrix method is used to investigate the finite-time synchronization of MNNs, which reduces conservativeness and easily constructs solvable nonlinear finite-time synchronization controllers.</description><subject>Finite-time synchronization</subject><subject>Interval matrix method</subject><subject>Memristor neural networks</subject><subject>Nonlinear feedback controllers</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQhkVoiJ20_yCUPfay29GHV9pLoZjmAww5JDkLWZolcrySK8lu018fBac99jQwPDPvzEPIJYWOAu2_brqA-4ClY8CgA9EB8BMyp0oOLZOKfSBzUANve1AwI-c5bwCgV4KfkRlnHBaSijm5v_LBF2yLn7DJL8E-pRj8H1N8DE0cmwmn5HOJqalpyWxrKb9ies7NwZvGh4LpULuTKcn_rnR5iu4jOR3NNuOn93pBHq9-PCxv2tXd9e3y-6q1vGel7RWzxg2L0azBOjcwaaTjcr0QxtHejmYAgaOCgaF0VCkJSAdpjKynW6EW_IJ8Oe7dpfhzj7noyWeL260JGPdZMz4wUd-XfUXFEbUp5pxw1LvkJ5NeNAX9plNv9FGnftOpQeiqs459fk_Yryd0_4b--qvAtyOA9c-Dx6Sz9RgsOp_QFu2i_3_CKxhlidg</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Wei, Fei</creator><creator>Chen, Guici</creator><creator>Wang, Wenbo</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3069-0829</orcidid></search><sort><creationdate>202007</creationdate><title>Finite-time synchronization of memristor neural networks via interval matrix method</title><author>Wei, Fei ; Chen, Guici ; Wang, Wenbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-682cad95fab0cdd927a7d37b54ad16cfa904ef8092e7d18870e197aa7057c4853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Finite-time synchronization</topic><topic>Interval matrix method</topic><topic>Memristor neural networks</topic><topic>Nonlinear feedback controllers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Fei</creatorcontrib><creatorcontrib>Chen, Guici</creatorcontrib><creatorcontrib>Wang, Wenbo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Fei</au><au>Chen, Guici</au><au>Wang, Wenbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-time synchronization of memristor neural networks via interval matrix method</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2020-07</date><risdate>2020</risdate><volume>127</volume><spage>7</spage><epage>18</epage><pages>7-18</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>In this paper, the finite-time synchronization problems of two types of driven-response memristor neural networks (MNNs) without time-delay and with time-varying delays are investigated via interval matrix method, respectively. Based on interval matrix transformation, the driven-response MNNs are transformed into a kind of system with interval parameters, which is different from the previous research approaches. Several sufficient conditions in terms of linear matrix inequalities (LMIs) are driven to guarantee finite-time synchronization for MNNs. Correspondingly, two types of nonlinear feedback controllers are designed. Meanwhile, the upper-bounded of the settling time functions are estimated. Finally, two numerical examples with simulations are given to illustrate the correctness of the theoretical results and the effectiveness of the proposed controllers. •The MNNs without time-delay and with time-varying delays are transformed into a kind of system with interval parameters, which overcomes the influence of switching jumping parameters.•Two different kinds of nonlinear feedback controllers are constructed by solving several LMIs, which is independent and dependent on time-delay, respectively.•The interval matrix method is used to investigate the finite-time synchronization of MNNs, which reduces conservativeness and easily constructs solvable nonlinear finite-time synchronization controllers.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>32305714</pmid><doi>10.1016/j.neunet.2020.04.003</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3069-0829</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2020-07, Vol.127, p.7-18
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_2392460876
source Elsevier ScienceDirect Journals Complete
subjects Finite-time synchronization
Interval matrix method
Memristor neural networks
Nonlinear feedback controllers
title Finite-time synchronization of memristor neural networks via interval matrix method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-time%20synchronization%20of%20memristor%20neural%20networks%20via%20interval%20matrix%20method&rft.jtitle=Neural%20networks&rft.au=Wei,%20Fei&rft.date=2020-07&rft.volume=127&rft.spage=7&rft.epage=18&rft.pages=7-18&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2020.04.003&rft_dat=%3Cproquest_cross%3E2392460876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392460876&rft_id=info:pmid/32305714&rft_els_id=S0893608020301234&rfr_iscdi=true