Three-Dimensional Hierarchical Wrinkles on Polymer Films: From Chaotic to Ordered Antimicrobial Topographies
Microbial contamination of polymer surfaces has become a significant challenge in domestic, industrial, and biomedical applications. Recent progress in our understanding of how topographical features of different length scales can be used to effectively and selectively control the attachment and pro...
Gespeichert in:
Veröffentlicht in: | Trends in biotechnology (Regular ed.) 2020-05, Vol.38 (5), p.558-571 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 571 |
---|---|
container_issue | 5 |
container_start_page | 558 |
container_title | Trends in biotechnology (Regular ed.) |
container_volume | 38 |
creator | Nguyen, Duy H.K. Bazaka, Olha Bazaka, Kateryna Crawford, Russell J. Ivanova, Elena P. |
description | Microbial contamination of polymer surfaces has become a significant challenge in domestic, industrial, and biomedical applications. Recent progress in our understanding of how topographical features of different length scales can be used to effectively and selectively control the attachment and proliferation of different cell types has provided an alternative strategy for imparting antibacterial activity to these surfaces. Among the well-recognized engineered models of antibacterial surface topographies, self-organized wrinkles have shown particular promise with respect to their antimicrobial characteristics. Here, we critically review the mechanisms by which wrinkles form on the surface of different types of polymer material and how they interact with various biomolecules and cell types. We also discuss the feasibility of using this antimicrobial strategy in real-life biomedical applications.
A self-organized wrinkled topography is a potential candidate for the next generation of antibacterial surfaces.A wrinkled topography comprises two characteristic parameters: an amplitude and a wavelength.Wrinkled surfaces containing lubricants, polymer brushes, and fluorinated polymers have antifouling activity via chemical pathways. The scale of the hierarchical wrinkled topology and the stability of air entrapment inhibit microbial attachment by physically limiting the available surface area under static conditions.Wrinkled topographies derived from graphene oxide (GO), reduced GO, or nanosilver show excellent antimicrobial activity due to the intrinsic bactericidal property of these materials.The integration of appropriate materials into wrinkled topographies results in greater control over their interactions with biomolecules and cell lines for biomedical applications. |
doi_str_mv | 10.1016/j.tibtech.2019.12.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2391971816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167779919302999</els_id><sourcerecordid>2425658762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-3e80dcdc45108dd52277cb390d43c0a9d00de3f256718b7756e489b44cf34fcc3</originalsourceid><addsrcrecordid>eNqFkUFP3DAQhS3UChban9DKUi-9JIztJI65VGjLAhISPWzVo5XYk8bbJN7aWST-PUa7cODCaTTS995o3iPkC4OcAavON_ns2hlNn3NgKmc8ByiOyILVUmUCVPWBLBInMymVOiGnMW4AQEjFjsmJ4AJ4WcOCDOs-IGY_3YhTdH5qBnrjMDTB9M6k5U9w078BI_UT_eWHxxEDXblhjBd0FfxIl33jZ2fo7Ol9sBjQ0stpdqMzwbcuGaz91v8NzbZ3GD-Rj10zRPx8mGfk9-pqvbzJ7u6vb5eXd5kpSjVnAmuwxqaFQW1tybmUphUKbCEMNMoCWBQdLyvJ6lbKssKiVm1RmE4UnTHijHzf-26D_7_DOOvRRYPD0Ezod1FzoZhKWlYl9NsbdON3IcWQqCJdKGtZ8USVeyp9FWPATm-DG5vwqBno5zr0Rh_q0M91aMZ1qiPpvh7cd-2I9lX1kn8CfuwBTHE8pOB1NA4ng9YFNLO23r1z4glegJ5z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425658762</pqid></control><display><type>article</type><title>Three-Dimensional Hierarchical Wrinkles on Polymer Films: From Chaotic to Ordered Antimicrobial Topographies</title><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Nguyen, Duy H.K. ; Bazaka, Olha ; Bazaka, Kateryna ; Crawford, Russell J. ; Ivanova, Elena P.</creator><creatorcontrib>Nguyen, Duy H.K. ; Bazaka, Olha ; Bazaka, Kateryna ; Crawford, Russell J. ; Ivanova, Elena P.</creatorcontrib><description>Microbial contamination of polymer surfaces has become a significant challenge in domestic, industrial, and biomedical applications. Recent progress in our understanding of how topographical features of different length scales can be used to effectively and selectively control the attachment and proliferation of different cell types has provided an alternative strategy for imparting antibacterial activity to these surfaces. Among the well-recognized engineered models of antibacterial surface topographies, self-organized wrinkles have shown particular promise with respect to their antimicrobial characteristics. Here, we critically review the mechanisms by which wrinkles form on the surface of different types of polymer material and how they interact with various biomolecules and cell types. We also discuss the feasibility of using this antimicrobial strategy in real-life biomedical applications.
A self-organized wrinkled topography is a potential candidate for the next generation of antibacterial surfaces.A wrinkled topography comprises two characteristic parameters: an amplitude and a wavelength.Wrinkled surfaces containing lubricants, polymer brushes, and fluorinated polymers have antifouling activity via chemical pathways. The scale of the hierarchical wrinkled topology and the stability of air entrapment inhibit microbial attachment by physically limiting the available surface area under static conditions.Wrinkled topographies derived from graphene oxide (GO), reduced GO, or nanosilver show excellent antimicrobial activity due to the intrinsic bactericidal property of these materials.The integration of appropriate materials into wrinkled topographies results in greater control over their interactions with biomolecules and cell lines for biomedical applications.</description><identifier>ISSN: 0167-7799</identifier><identifier>EISSN: 1879-3096</identifier><identifier>DOI: 10.1016/j.tibtech.2019.12.004</identifier><identifier>PMID: 32302580</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Antibacterial activity ; Antimicrobial agents ; antimicrobial surfaces ; Bacteria ; Biofilms ; Biomedical materials ; Biomolecules ; Catheters ; Mechanical properties ; Microbial contamination ; Microorganisms ; nano/micro-topographies ; Plasma etching ; Polymer films ; Polymerization ; Polymers ; polymers and biocompatibility ; Seawater ; self-organized wrinkling ; Solvents</subject><ispartof>Trends in biotechnology (Regular ed.), 2020-05, Vol.38 (5), p.558-571</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><rights>2019. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-3e80dcdc45108dd52277cb390d43c0a9d00de3f256718b7756e489b44cf34fcc3</citedby><cites>FETCH-LOGICAL-c459t-3e80dcdc45108dd52277cb390d43c0a9d00de3f256718b7756e489b44cf34fcc3</cites><orcidid>0000-0002-5509-8071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2425658762?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993,64383,64385,64387,72239</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32302580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Duy H.K.</creatorcontrib><creatorcontrib>Bazaka, Olha</creatorcontrib><creatorcontrib>Bazaka, Kateryna</creatorcontrib><creatorcontrib>Crawford, Russell J.</creatorcontrib><creatorcontrib>Ivanova, Elena P.</creatorcontrib><title>Three-Dimensional Hierarchical Wrinkles on Polymer Films: From Chaotic to Ordered Antimicrobial Topographies</title><title>Trends in biotechnology (Regular ed.)</title><addtitle>Trends Biotechnol</addtitle><description>Microbial contamination of polymer surfaces has become a significant challenge in domestic, industrial, and biomedical applications. Recent progress in our understanding of how topographical features of different length scales can be used to effectively and selectively control the attachment and proliferation of different cell types has provided an alternative strategy for imparting antibacterial activity to these surfaces. Among the well-recognized engineered models of antibacterial surface topographies, self-organized wrinkles have shown particular promise with respect to their antimicrobial characteristics. Here, we critically review the mechanisms by which wrinkles form on the surface of different types of polymer material and how they interact with various biomolecules and cell types. We also discuss the feasibility of using this antimicrobial strategy in real-life biomedical applications.
A self-organized wrinkled topography is a potential candidate for the next generation of antibacterial surfaces.A wrinkled topography comprises two characteristic parameters: an amplitude and a wavelength.Wrinkled surfaces containing lubricants, polymer brushes, and fluorinated polymers have antifouling activity via chemical pathways. The scale of the hierarchical wrinkled topology and the stability of air entrapment inhibit microbial attachment by physically limiting the available surface area under static conditions.Wrinkled topographies derived from graphene oxide (GO), reduced GO, or nanosilver show excellent antimicrobial activity due to the intrinsic bactericidal property of these materials.The integration of appropriate materials into wrinkled topographies results in greater control over their interactions with biomolecules and cell lines for biomedical applications.</description><subject>Antibacterial activity</subject><subject>Antimicrobial agents</subject><subject>antimicrobial surfaces</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Biomedical materials</subject><subject>Biomolecules</subject><subject>Catheters</subject><subject>Mechanical properties</subject><subject>Microbial contamination</subject><subject>Microorganisms</subject><subject>nano/micro-topographies</subject><subject>Plasma etching</subject><subject>Polymer films</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>polymers and biocompatibility</subject><subject>Seawater</subject><subject>self-organized wrinkling</subject><subject>Solvents</subject><issn>0167-7799</issn><issn>1879-3096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUFP3DAQhS3UChban9DKUi-9JIztJI65VGjLAhISPWzVo5XYk8bbJN7aWST-PUa7cODCaTTS995o3iPkC4OcAavON_ns2hlNn3NgKmc8ByiOyILVUmUCVPWBLBInMymVOiGnMW4AQEjFjsmJ4AJ4WcOCDOs-IGY_3YhTdH5qBnrjMDTB9M6k5U9w078BI_UT_eWHxxEDXblhjBd0FfxIl33jZ2fo7Ol9sBjQ0stpdqMzwbcuGaz91v8NzbZ3GD-Rj10zRPx8mGfk9-pqvbzJ7u6vb5eXd5kpSjVnAmuwxqaFQW1tybmUphUKbCEMNMoCWBQdLyvJ6lbKssKiVm1RmE4UnTHijHzf-26D_7_DOOvRRYPD0Ezod1FzoZhKWlYl9NsbdON3IcWQqCJdKGtZ8USVeyp9FWPATm-DG5vwqBno5zr0Rh_q0M91aMZ1qiPpvh7cd-2I9lX1kn8CfuwBTHE8pOB1NA4ng9YFNLO23r1z4glegJ5z</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Nguyen, Duy H.K.</creator><creator>Bazaka, Olha</creator><creator>Bazaka, Kateryna</creator><creator>Crawford, Russell J.</creator><creator>Ivanova, Elena P.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5509-8071</orcidid></search><sort><creationdate>202005</creationdate><title>Three-Dimensional Hierarchical Wrinkles on Polymer Films: From Chaotic to Ordered Antimicrobial Topographies</title><author>Nguyen, Duy H.K. ; Bazaka, Olha ; Bazaka, Kateryna ; Crawford, Russell J. ; Ivanova, Elena P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-3e80dcdc45108dd52277cb390d43c0a9d00de3f256718b7756e489b44cf34fcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antibacterial activity</topic><topic>Antimicrobial agents</topic><topic>antimicrobial surfaces</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Biomedical materials</topic><topic>Biomolecules</topic><topic>Catheters</topic><topic>Mechanical properties</topic><topic>Microbial contamination</topic><topic>Microorganisms</topic><topic>nano/micro-topographies</topic><topic>Plasma etching</topic><topic>Polymer films</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>polymers and biocompatibility</topic><topic>Seawater</topic><topic>self-organized wrinkling</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Duy H.K.</creatorcontrib><creatorcontrib>Bazaka, Olha</creatorcontrib><creatorcontrib>Bazaka, Kateryna</creatorcontrib><creatorcontrib>Crawford, Russell J.</creatorcontrib><creatorcontrib>Ivanova, Elena P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in biotechnology (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Duy H.K.</au><au>Bazaka, Olha</au><au>Bazaka, Kateryna</au><au>Crawford, Russell J.</au><au>Ivanova, Elena P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Hierarchical Wrinkles on Polymer Films: From Chaotic to Ordered Antimicrobial Topographies</atitle><jtitle>Trends in biotechnology (Regular ed.)</jtitle><addtitle>Trends Biotechnol</addtitle><date>2020-05</date><risdate>2020</risdate><volume>38</volume><issue>5</issue><spage>558</spage><epage>571</epage><pages>558-571</pages><issn>0167-7799</issn><eissn>1879-3096</eissn><abstract>Microbial contamination of polymer surfaces has become a significant challenge in domestic, industrial, and biomedical applications. Recent progress in our understanding of how topographical features of different length scales can be used to effectively and selectively control the attachment and proliferation of different cell types has provided an alternative strategy for imparting antibacterial activity to these surfaces. Among the well-recognized engineered models of antibacterial surface topographies, self-organized wrinkles have shown particular promise with respect to their antimicrobial characteristics. Here, we critically review the mechanisms by which wrinkles form on the surface of different types of polymer material and how they interact with various biomolecules and cell types. We also discuss the feasibility of using this antimicrobial strategy in real-life biomedical applications.
A self-organized wrinkled topography is a potential candidate for the next generation of antibacterial surfaces.A wrinkled topography comprises two characteristic parameters: an amplitude and a wavelength.Wrinkled surfaces containing lubricants, polymer brushes, and fluorinated polymers have antifouling activity via chemical pathways. The scale of the hierarchical wrinkled topology and the stability of air entrapment inhibit microbial attachment by physically limiting the available surface area under static conditions.Wrinkled topographies derived from graphene oxide (GO), reduced GO, or nanosilver show excellent antimicrobial activity due to the intrinsic bactericidal property of these materials.The integration of appropriate materials into wrinkled topographies results in greater control over their interactions with biomolecules and cell lines for biomedical applications.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32302580</pmid><doi>10.1016/j.tibtech.2019.12.004</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5509-8071</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7799 |
ispartof | Trends in biotechnology (Regular ed.), 2020-05, Vol.38 (5), p.558-571 |
issn | 0167-7799 1879-3096 |
language | eng |
recordid | cdi_proquest_miscellaneous_2391971816 |
source | Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland |
subjects | Antibacterial activity Antimicrobial agents antimicrobial surfaces Bacteria Biofilms Biomedical materials Biomolecules Catheters Mechanical properties Microbial contamination Microorganisms nano/micro-topographies Plasma etching Polymer films Polymerization Polymers polymers and biocompatibility Seawater self-organized wrinkling Solvents |
title | Three-Dimensional Hierarchical Wrinkles on Polymer Films: From Chaotic to Ordered Antimicrobial Topographies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Hierarchical%20Wrinkles%20on%20Polymer%20Films:%20From%20Chaotic%20to%20Ordered%20Antimicrobial%20Topographies&rft.jtitle=Trends%20in%20biotechnology%20(Regular%20ed.)&rft.au=Nguyen,%20Duy%20H.K.&rft.date=2020-05&rft.volume=38&rft.issue=5&rft.spage=558&rft.epage=571&rft.pages=558-571&rft.issn=0167-7799&rft.eissn=1879-3096&rft_id=info:doi/10.1016/j.tibtech.2019.12.004&rft_dat=%3Cproquest_cross%3E2425658762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425658762&rft_id=info:pmid/32302580&rft_els_id=S0167779919302999&rfr_iscdi=true |