Theory of monotonic transformations applied to optimal design problems
The paper presents a theory of monotonic transformations applied to optimal design problems. The method applies to design of structures which require the minimization of the value of an objective functional f over a set of nonnegative functions which obey a constraint of specified form with T as an...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 1980-01, Vol.72 (4), p.381-393 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 393 |
---|---|
container_issue | 4 |
container_start_page | 381 |
container_title | Archive for rational mechanics and analysis |
container_volume | 72 |
creator | Coleman, Bernard D. Duffin, Richard J. Knowles, Greg |
description | The paper presents a theory of monotonic transformations applied to optimal design problems. The method applies to design of structures which require the minimization of the value of an objective functional f over a set of nonnegative functions which obey a constraint of specified form with T as an integral operator. The case when f and T are monotonic is considered, and the derived theorem applied to examples of cantilevered beams of variable height and variable width. In conclusion, it is shown that a cantilevered beam of variable width subject to the previously derived constraint has a minimal when the width is mass given by an expression in terms of the downward acting load and the maximum effective stress. |
doi_str_mv | 10.1007/BF00248523 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23915952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23915952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-5941204ee241afaaeb23122dad0ad0b0bfc243a5bb74c9056243ff22baaf34c33</originalsourceid><addsrcrecordid>eNpFkEFLxDAQhYMoWFcv_oKcPAjVySRt7VEXq8KCl_VcJmmilbapSfaw_94uKwgDw4OPN_MeY9cC7gRAdf_UAKB6KFCesEwoiTmUlTxlGQDIvC6wOmcXMX4fJMoyY832y_qw597x0U8--ak3PAWaovNhpNT7KXKa56G3HU-e-zn1Iw28s7H_nPgcvB7sGC_ZmaMh2qu_vWIfzfN2_Zpv3l_e1o-b3GCJKS9qJRCUtagEOSKrUQrEjjpYRoN2BpWkQutKmRqKclHOIWoiJ5WRcsVujr7L4Z-djakd-2jsMNBk_S62KGtRLDEX8PYImuBjDNa1c1geD_tWQHuoqv2vSv4Cd5tcRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23915952</pqid></control><display><type>article</type><title>Theory of monotonic transformations applied to optimal design problems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Coleman, Bernard D. ; Duffin, Richard J. ; Knowles, Greg</creator><creatorcontrib>Coleman, Bernard D. ; Duffin, Richard J. ; Knowles, Greg</creatorcontrib><description>The paper presents a theory of monotonic transformations applied to optimal design problems. The method applies to design of structures which require the minimization of the value of an objective functional f over a set of nonnegative functions which obey a constraint of specified form with T as an integral operator. The case when f and T are monotonic is considered, and the derived theorem applied to examples of cantilevered beams of variable height and variable width. In conclusion, it is shown that a cantilevered beam of variable width subject to the previously derived constraint has a minimal when the width is mass given by an expression in terms of the downward acting load and the maximum effective stress.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/BF00248523</identifier><language>eng</language><ispartof>Archive for rational mechanics and analysis, 1980-01, Vol.72 (4), p.381-393</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262t-5941204ee241afaaeb23122dad0ad0b0bfc243a5bb74c9056243ff22baaf34c33</citedby><cites>FETCH-LOGICAL-c262t-5941204ee241afaaeb23122dad0ad0b0bfc243a5bb74c9056243ff22baaf34c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Coleman, Bernard D.</creatorcontrib><creatorcontrib>Duffin, Richard J.</creatorcontrib><creatorcontrib>Knowles, Greg</creatorcontrib><title>Theory of monotonic transformations applied to optimal design problems</title><title>Archive for rational mechanics and analysis</title><description>The paper presents a theory of monotonic transformations applied to optimal design problems. The method applies to design of structures which require the minimization of the value of an objective functional f over a set of nonnegative functions which obey a constraint of specified form with T as an integral operator. The case when f and T are monotonic is considered, and the derived theorem applied to examples of cantilevered beams of variable height and variable width. In conclusion, it is shown that a cantilevered beam of variable width subject to the previously derived constraint has a minimal when the width is mass given by an expression in terms of the downward acting load and the maximum effective stress.</description><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLxDAQhYMoWFcv_oKcPAjVySRt7VEXq8KCl_VcJmmilbapSfaw_94uKwgDw4OPN_MeY9cC7gRAdf_UAKB6KFCesEwoiTmUlTxlGQDIvC6wOmcXMX4fJMoyY832y_qw597x0U8--ak3PAWaovNhpNT7KXKa56G3HU-e-zn1Iw28s7H_nPgcvB7sGC_ZmaMh2qu_vWIfzfN2_Zpv3l_e1o-b3GCJKS9qJRCUtagEOSKrUQrEjjpYRoN2BpWkQutKmRqKclHOIWoiJ5WRcsVujr7L4Z-djakd-2jsMNBk_S62KGtRLDEX8PYImuBjDNa1c1geD_tWQHuoqv2vSv4Cd5tcRA</recordid><startdate>19800101</startdate><enddate>19800101</enddate><creator>Coleman, Bernard D.</creator><creator>Duffin, Richard J.</creator><creator>Knowles, Greg</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19800101</creationdate><title>Theory of monotonic transformations applied to optimal design problems</title><author>Coleman, Bernard D. ; Duffin, Richard J. ; Knowles, Greg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-5941204ee241afaaeb23122dad0ad0b0bfc243a5bb74c9056243ff22baaf34c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coleman, Bernard D.</creatorcontrib><creatorcontrib>Duffin, Richard J.</creatorcontrib><creatorcontrib>Knowles, Greg</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coleman, Bernard D.</au><au>Duffin, Richard J.</au><au>Knowles, Greg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of monotonic transformations applied to optimal design problems</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><date>1980-01-01</date><risdate>1980</risdate><volume>72</volume><issue>4</issue><spage>381</spage><epage>393</epage><pages>381-393</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>The paper presents a theory of monotonic transformations applied to optimal design problems. The method applies to design of structures which require the minimization of the value of an objective functional f over a set of nonnegative functions which obey a constraint of specified form with T as an integral operator. The case when f and T are monotonic is considered, and the derived theorem applied to examples of cantilevered beams of variable height and variable width. In conclusion, it is shown that a cantilevered beam of variable width subject to the previously derived constraint has a minimal when the width is mass given by an expression in terms of the downward acting load and the maximum effective stress.</abstract><doi>10.1007/BF00248523</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 1980-01, Vol.72 (4), p.381-393 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_miscellaneous_23915952 |
source | SpringerLink Journals - AutoHoldings |
title | Theory of monotonic transformations applied to optimal design problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20monotonic%20transformations%20applied%20to%20optimal%20design%20problems&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Coleman,%20Bernard%20D.&rft.date=1980-01-01&rft.volume=72&rft.issue=4&rft.spage=381&rft.epage=393&rft.pages=381-393&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/BF00248523&rft_dat=%3Cproquest_cross%3E23915952%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23915952&rft_id=info:pmid/&rfr_iscdi=true |