Agriculture and the Disruption of Plant–Microbial Symbiosis

Domestication has transformed hundreds of wild plant species into productive cultivars for human utility. However, cultivation practices and intense artificial selection for yield may entail a hidden cost: the disruption of interactions between plants and beneficial microbiota. Here, we synthesize t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in ecology & evolution (Amsterdam) 2020-05, Vol.35 (5), p.426-439
Hauptverfasser: Porter, Stephanie S., Sachs, Joel L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 439
container_issue 5
container_start_page 426
container_title Trends in ecology & evolution (Amsterdam)
container_volume 35
creator Porter, Stephanie S.
Sachs, Joel L.
description Domestication has transformed hundreds of wild plant species into productive cultivars for human utility. However, cultivation practices and intense artificial selection for yield may entail a hidden cost: the disruption of interactions between plants and beneficial microbiota. Here, we synthesize theory predicting that evolutionary trade-offs, genetic costs, and relaxed selection disrupt plant–microbial symbiosis under domestication, and review the wealth of new data interrogating these predictions in crops. We describe the agronomic practices, ecological scenarios, and genomic attributes that can result in the disruption of symbiosis, and highlight new work probing its molecular basis. To improve agricultural output and sustainability, research should develop breeding methods to optimize symbiotic outcomes in crop species. Many crops interact differently with beneficial microbiota compared with their wild relatives.Plant traits that regulate symbiosis can be disrupted because: (i) disruption of the trait is favored directly or indirectly by artificial selection; (ii) plant traits accumulate deleterious genetic mutations due to the demographics of the breeding population; or (iii) disruption of the trait is selectively neutral under agricultural conditions.These mechanisms generate distinct patterns of symbiosis trait evolution, each of which can be detected with trait-based and population-genetic analysis.Identifying mechanisms that result in symbiosis trait disruption in crops will be essential for future efforts to maximize the benefits of microbial symbiosis for crops.
doi_str_mv 10.1016/j.tree.2020.01.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2390647754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169534720300082</els_id><sourcerecordid>2390647754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-811531f884bfce567b45ec87e8b4e81c8f02b6a60c97b50ea52e89abb518e4b13</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyxQlmwSbMdJHAkWVXlKRSABa8t2JuAqj2I7SN3xD_whX4KrFpbMZjbnXs0chI4JTggm-dki8RYgoZjiBJME43wHjQkvaMxTnu6icYDKOEtZMUIHzi1wmJKV-2iUUloyRtkYXUxfrdFD4wcLkeyqyL9BdGmcHZbe9F3U19FjIzv__fl1b7TtlZFN9LRqlemdcYdor5aNg6PtnqCX66vn2W08f7i5m03nsWYY-5gTkqWk5pypWkOWF4ploHkBXDHgRPMaU5XLHOuyUBkGmVHgpVQqIxyYIukEnW56l7Z_H8B50RqnoQmXQT84QdMS56woMhZQukHDsc5ZqMXSmlbalSBYrLWJhVhrE2ttAhMRtIXQybZ_UC1Uf5FfTwE43wAQvvwwYIXTBjoNlbGgvah681__D8WqfuE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390647754</pqid></control><display><type>article</type><title>Agriculture and the Disruption of Plant–Microbial Symbiosis</title><source>Elsevier ScienceDirect Journals</source><creator>Porter, Stephanie S. ; Sachs, Joel L.</creator><creatorcontrib>Porter, Stephanie S. ; Sachs, Joel L.</creatorcontrib><description>Domestication has transformed hundreds of wild plant species into productive cultivars for human utility. However, cultivation practices and intense artificial selection for yield may entail a hidden cost: the disruption of interactions between plants and beneficial microbiota. Here, we synthesize theory predicting that evolutionary trade-offs, genetic costs, and relaxed selection disrupt plant–microbial symbiosis under domestication, and review the wealth of new data interrogating these predictions in crops. We describe the agronomic practices, ecological scenarios, and genomic attributes that can result in the disruption of symbiosis, and highlight new work probing its molecular basis. To improve agricultural output and sustainability, research should develop breeding methods to optimize symbiotic outcomes in crop species. Many crops interact differently with beneficial microbiota compared with their wild relatives.Plant traits that regulate symbiosis can be disrupted because: (i) disruption of the trait is favored directly or indirectly by artificial selection; (ii) plant traits accumulate deleterious genetic mutations due to the demographics of the breeding population; or (iii) disruption of the trait is selectively neutral under agricultural conditions.These mechanisms generate distinct patterns of symbiosis trait evolution, each of which can be detected with trait-based and population-genetic analysis.Identifying mechanisms that result in symbiosis trait disruption in crops will be essential for future efforts to maximize the benefits of microbial symbiosis for crops.</description><identifier>ISSN: 0169-5347</identifier><identifier>EISSN: 1872-8383</identifier><identifier>DOI: 10.1016/j.tree.2020.01.006</identifier><identifier>PMID: 32294424</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>agriculture ; domestication ; microbial symbiosis ; mutualism ; plant–microbe interactions</subject><ispartof>Trends in ecology &amp; evolution (Amsterdam), 2020-05, Vol.35 (5), p.426-439</ispartof><rights>2020</rights><rights>Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-811531f884bfce567b45ec87e8b4e81c8f02b6a60c97b50ea52e89abb518e4b13</citedby><cites>FETCH-LOGICAL-c400t-811531f884bfce567b45ec87e8b4e81c8f02b6a60c97b50ea52e89abb518e4b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tree.2020.01.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32294424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Porter, Stephanie S.</creatorcontrib><creatorcontrib>Sachs, Joel L.</creatorcontrib><title>Agriculture and the Disruption of Plant–Microbial Symbiosis</title><title>Trends in ecology &amp; evolution (Amsterdam)</title><addtitle>Trends Ecol Evol</addtitle><description>Domestication has transformed hundreds of wild plant species into productive cultivars for human utility. However, cultivation practices and intense artificial selection for yield may entail a hidden cost: the disruption of interactions between plants and beneficial microbiota. Here, we synthesize theory predicting that evolutionary trade-offs, genetic costs, and relaxed selection disrupt plant–microbial symbiosis under domestication, and review the wealth of new data interrogating these predictions in crops. We describe the agronomic practices, ecological scenarios, and genomic attributes that can result in the disruption of symbiosis, and highlight new work probing its molecular basis. To improve agricultural output and sustainability, research should develop breeding methods to optimize symbiotic outcomes in crop species. Many crops interact differently with beneficial microbiota compared with their wild relatives.Plant traits that regulate symbiosis can be disrupted because: (i) disruption of the trait is favored directly or indirectly by artificial selection; (ii) plant traits accumulate deleterious genetic mutations due to the demographics of the breeding population; or (iii) disruption of the trait is selectively neutral under agricultural conditions.These mechanisms generate distinct patterns of symbiosis trait evolution, each of which can be detected with trait-based and population-genetic analysis.Identifying mechanisms that result in symbiosis trait disruption in crops will be essential for future efforts to maximize the benefits of microbial symbiosis for crops.</description><subject>agriculture</subject><subject>domestication</subject><subject>microbial symbiosis</subject><subject>mutualism</subject><subject>plant–microbe interactions</subject><issn>0169-5347</issn><issn>1872-8383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwAyxQlmwSbMdJHAkWVXlKRSABa8t2JuAqj2I7SN3xD_whX4KrFpbMZjbnXs0chI4JTggm-dki8RYgoZjiBJME43wHjQkvaMxTnu6icYDKOEtZMUIHzi1wmJKV-2iUUloyRtkYXUxfrdFD4wcLkeyqyL9BdGmcHZbe9F3U19FjIzv__fl1b7TtlZFN9LRqlemdcYdor5aNg6PtnqCX66vn2W08f7i5m03nsWYY-5gTkqWk5pypWkOWF4ploHkBXDHgRPMaU5XLHOuyUBkGmVHgpVQqIxyYIukEnW56l7Z_H8B50RqnoQmXQT84QdMS56woMhZQukHDsc5ZqMXSmlbalSBYrLWJhVhrE2ttAhMRtIXQybZ_UC1Uf5FfTwE43wAQvvwwYIXTBjoNlbGgvah681__D8WqfuE</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Porter, Stephanie S.</creator><creator>Sachs, Joel L.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202005</creationdate><title>Agriculture and the Disruption of Plant–Microbial Symbiosis</title><author>Porter, Stephanie S. ; Sachs, Joel L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-811531f884bfce567b45ec87e8b4e81c8f02b6a60c97b50ea52e89abb518e4b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>agriculture</topic><topic>domestication</topic><topic>microbial symbiosis</topic><topic>mutualism</topic><topic>plant–microbe interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porter, Stephanie S.</creatorcontrib><creatorcontrib>Sachs, Joel L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in ecology &amp; evolution (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Porter, Stephanie S.</au><au>Sachs, Joel L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Agriculture and the Disruption of Plant–Microbial Symbiosis</atitle><jtitle>Trends in ecology &amp; evolution (Amsterdam)</jtitle><addtitle>Trends Ecol Evol</addtitle><date>2020-05</date><risdate>2020</risdate><volume>35</volume><issue>5</issue><spage>426</spage><epage>439</epage><pages>426-439</pages><issn>0169-5347</issn><eissn>1872-8383</eissn><abstract>Domestication has transformed hundreds of wild plant species into productive cultivars for human utility. However, cultivation practices and intense artificial selection for yield may entail a hidden cost: the disruption of interactions between plants and beneficial microbiota. Here, we synthesize theory predicting that evolutionary trade-offs, genetic costs, and relaxed selection disrupt plant–microbial symbiosis under domestication, and review the wealth of new data interrogating these predictions in crops. We describe the agronomic practices, ecological scenarios, and genomic attributes that can result in the disruption of symbiosis, and highlight new work probing its molecular basis. To improve agricultural output and sustainability, research should develop breeding methods to optimize symbiotic outcomes in crop species. Many crops interact differently with beneficial microbiota compared with their wild relatives.Plant traits that regulate symbiosis can be disrupted because: (i) disruption of the trait is favored directly or indirectly by artificial selection; (ii) plant traits accumulate deleterious genetic mutations due to the demographics of the breeding population; or (iii) disruption of the trait is selectively neutral under agricultural conditions.These mechanisms generate distinct patterns of symbiosis trait evolution, each of which can be detected with trait-based and population-genetic analysis.Identifying mechanisms that result in symbiosis trait disruption in crops will be essential for future efforts to maximize the benefits of microbial symbiosis for crops.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32294424</pmid><doi>10.1016/j.tree.2020.01.006</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0169-5347
ispartof Trends in ecology & evolution (Amsterdam), 2020-05, Vol.35 (5), p.426-439
issn 0169-5347
1872-8383
language eng
recordid cdi_proquest_miscellaneous_2390647754
source Elsevier ScienceDirect Journals
subjects agriculture
domestication
microbial symbiosis
mutualism
plant–microbe interactions
title Agriculture and the Disruption of Plant–Microbial Symbiosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Agriculture%20and%20the%20Disruption%20of%20Plant%E2%80%93Microbial%20Symbiosis&rft.jtitle=Trends%20in%20ecology%20&%20evolution%20(Amsterdam)&rft.au=Porter,%20Stephanie%20S.&rft.date=2020-05&rft.volume=35&rft.issue=5&rft.spage=426&rft.epage=439&rft.pages=426-439&rft.issn=0169-5347&rft.eissn=1872-8383&rft_id=info:doi/10.1016/j.tree.2020.01.006&rft_dat=%3Cproquest_cross%3E2390647754%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390647754&rft_id=info:pmid/32294424&rft_els_id=S0169534720300082&rfr_iscdi=true