Comparative transcriptomics reveals domestication‐associated features of Atlantic salmon lipid metabolism

Domestication of animals imposes strong targeted selection for desired traits but can also result in unintended selection due to new domestic environments. Atlantic salmon (Salmo salmar) was domesticated in the 1970s and has subsequently been selected for faster growth in systematic breeding program...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2020-05, Vol.29 (10), p.1860-1872
Hauptverfasser: Jin, Yang, Olsen, Rolf Erik, Harvey, Thomas Nelson, Østensen, Mari‐Ann, Li, Keshuai, Santi, Nina, Vadstein, Olav, Bones, Atle Magnar, Vik, Jon Olav, Sandve, Simen Rød, Olsen, Yngvar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1872
container_issue 10
container_start_page 1860
container_title Molecular ecology
container_volume 29
creator Jin, Yang
Olsen, Rolf Erik
Harvey, Thomas Nelson
Østensen, Mari‐Ann
Li, Keshuai
Santi, Nina
Vadstein, Olav
Bones, Atle Magnar
Vik, Jon Olav
Sandve, Simen Rød
Olsen, Yngvar
description Domestication of animals imposes strong targeted selection for desired traits but can also result in unintended selection due to new domestic environments. Atlantic salmon (Salmo salmar) was domesticated in the 1970s and has subsequently been selected for faster growth in systematic breeding programmes. More recently, salmon aquaculture has replaced fish oils (FOs) with vegetable oils (VOs) in feed, radically changing the levels of essential long‐chain polyunsaturated fatty acids (LC‐PUFAs). Our aim here was to study the impact of domestication on metabolism and explore the hypothesis that the shift to VO diets has unintentionally selected for a domestication‐specific lipid metabolism. We conducted a 96‐day feeding trial of domesticated and wild salmon fed diets based on FOs, VOs or phospholipids, and compared transcriptomes and fatty acids in tissues involved in lipid absorption (pyloric caeca) and lipid turnover and synthesis (liver). Domesticated salmon had faster growth and higher gene expression in glucose and lipid metabolism compared to wild fish, possibly linked to differences in regulation of circadian rhythm pathways. Only the domesticated salmon increased expression of LC‐PUFA synthesis genes when given VOs. This transcriptome response difference was mirrored at the physiological level, with domesticated salmon having higher LC‐PUFA levels but lower 18:3n‐3 and 18:2n‐6 levels. In line with this, the VO diet decreased growth rate in wild but not domesticated salmon. Our study revealed a clear impact of domestication on transcriptomic regulation linked to metabolism and suggests that unintentional selection in the domestic environment has resulted in evolution of stronger compensatory mechanisms to a diet low in LC‐PUFAs.
doi_str_mv 10.1111/mec.15446
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2390167422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412773186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3886-e1b53ce6c9907c4f663a6ec51ee420c079fb603ed492d52af8fbeaef798d6cfe3</originalsourceid><addsrcrecordid>eNp10c1O3DAUBWALFcEUWPQFKkvd0EUG_yROvESjoUUaxIZK7CzHuZZM4zi1E6rZ9RF4Rp4E0wEWSHhzN5-OjnwQ-kLJkuZ35sEsaVWWYg8tKBdVwWR5-wktiBSsoKThh-hzSneEUM6q6gAdcsYkJzVZoN-r4Ecd9eTuAU9RD8lEN07BO5NwhHvQfcJd8JAmZ7IKw-O_B51SME5P0GELepojJBwsPp96PWSGk-59GHDvRtdhD5NuQ--SP0b7NsfBycs9Qr8u1jern8Xm-sfl6nxTGN40ogDaVtyAMFKS2pRWCK4FmIoClIwYUkvbCsKhKyXrKqZtY1vQYGvZdMJY4EfodJc7xvBnzs2Vd8lAn9tBmJNiXBIq6pKxTL-9o3dhjkNup1hJWV1z2oisvu-UiSGlCFaN0Xkdt4oS9byAyguo_wtk-_UlcW49dG_y9cszONuBv66H7cdJ6mq92kU-AfNJk3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412773186</pqid></control><display><type>article</type><title>Comparative transcriptomics reveals domestication‐associated features of Atlantic salmon lipid metabolism</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jin, Yang ; Olsen, Rolf Erik ; Harvey, Thomas Nelson ; Østensen, Mari‐Ann ; Li, Keshuai ; Santi, Nina ; Vadstein, Olav ; Bones, Atle Magnar ; Vik, Jon Olav ; Sandve, Simen Rød ; Olsen, Yngvar</creator><creatorcontrib>Jin, Yang ; Olsen, Rolf Erik ; Harvey, Thomas Nelson ; Østensen, Mari‐Ann ; Li, Keshuai ; Santi, Nina ; Vadstein, Olav ; Bones, Atle Magnar ; Vik, Jon Olav ; Sandve, Simen Rød ; Olsen, Yngvar</creatorcontrib><description>Domestication of animals imposes strong targeted selection for desired traits but can also result in unintended selection due to new domestic environments. Atlantic salmon (Salmo salmar) was domesticated in the 1970s and has subsequently been selected for faster growth in systematic breeding programmes. More recently, salmon aquaculture has replaced fish oils (FOs) with vegetable oils (VOs) in feed, radically changing the levels of essential long‐chain polyunsaturated fatty acids (LC‐PUFAs). Our aim here was to study the impact of domestication on metabolism and explore the hypothesis that the shift to VO diets has unintentionally selected for a domestication‐specific lipid metabolism. We conducted a 96‐day feeding trial of domesticated and wild salmon fed diets based on FOs, VOs or phospholipids, and compared transcriptomes and fatty acids in tissues involved in lipid absorption (pyloric caeca) and lipid turnover and synthesis (liver). Domesticated salmon had faster growth and higher gene expression in glucose and lipid metabolism compared to wild fish, possibly linked to differences in regulation of circadian rhythm pathways. Only the domesticated salmon increased expression of LC‐PUFA synthesis genes when given VOs. This transcriptome response difference was mirrored at the physiological level, with domesticated salmon having higher LC‐PUFA levels but lower 18:3n‐3 and 18:2n‐6 levels. In line with this, the VO diet decreased growth rate in wild but not domesticated salmon. Our study revealed a clear impact of domestication on transcriptomic regulation linked to metabolism and suggests that unintentional selection in the domestic environment has resulted in evolution of stronger compensatory mechanisms to a diet low in LC‐PUFAs.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.15446</identifier><identifier>PMID: 32293070</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Aquaculture ; Breeding ; circadian regulation ; Circadian rhythms ; Diet ; Domestication ; Fatty acids ; Fish oils ; Gene expression ; Glucose metabolism ; Growth rate ; Levels ; Lipid metabolism ; Lipid turnover ; Lipids ; long‐chain polyunsaturated fatty acids ; Metabolism ; Nutrient deficiency ; Phospholipids ; Polyunsaturated fatty acids ; Salmo salar ; Salmon ; Synthesis ; transcriptomics ; vegetable oil ; Vegetable oils ; wild salmon</subject><ispartof>Molecular ecology, 2020-05, Vol.29 (10), p.1860-1872</ispartof><rights>2020 The Authors. published by John Wiley &amp; Sons Ltd</rights><rights>2020 The Authors. Molecular Ecology published by John Wiley &amp; Sons Ltd.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3886-e1b53ce6c9907c4f663a6ec51ee420c079fb603ed492d52af8fbeaef798d6cfe3</citedby><cites>FETCH-LOGICAL-c3886-e1b53ce6c9907c4f663a6ec51ee420c079fb603ed492d52af8fbeaef798d6cfe3</cites><orcidid>0000-0003-4989-5311 ; 0000-0002-7778-4515 ; 0000-0001-5597-8397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.15446$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.15446$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32293070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Yang</creatorcontrib><creatorcontrib>Olsen, Rolf Erik</creatorcontrib><creatorcontrib>Harvey, Thomas Nelson</creatorcontrib><creatorcontrib>Østensen, Mari‐Ann</creatorcontrib><creatorcontrib>Li, Keshuai</creatorcontrib><creatorcontrib>Santi, Nina</creatorcontrib><creatorcontrib>Vadstein, Olav</creatorcontrib><creatorcontrib>Bones, Atle Magnar</creatorcontrib><creatorcontrib>Vik, Jon Olav</creatorcontrib><creatorcontrib>Sandve, Simen Rød</creatorcontrib><creatorcontrib>Olsen, Yngvar</creatorcontrib><title>Comparative transcriptomics reveals domestication‐associated features of Atlantic salmon lipid metabolism</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Domestication of animals imposes strong targeted selection for desired traits but can also result in unintended selection due to new domestic environments. Atlantic salmon (Salmo salmar) was domesticated in the 1970s and has subsequently been selected for faster growth in systematic breeding programmes. More recently, salmon aquaculture has replaced fish oils (FOs) with vegetable oils (VOs) in feed, radically changing the levels of essential long‐chain polyunsaturated fatty acids (LC‐PUFAs). Our aim here was to study the impact of domestication on metabolism and explore the hypothesis that the shift to VO diets has unintentionally selected for a domestication‐specific lipid metabolism. We conducted a 96‐day feeding trial of domesticated and wild salmon fed diets based on FOs, VOs or phospholipids, and compared transcriptomes and fatty acids in tissues involved in lipid absorption (pyloric caeca) and lipid turnover and synthesis (liver). Domesticated salmon had faster growth and higher gene expression in glucose and lipid metabolism compared to wild fish, possibly linked to differences in regulation of circadian rhythm pathways. Only the domesticated salmon increased expression of LC‐PUFA synthesis genes when given VOs. This transcriptome response difference was mirrored at the physiological level, with domesticated salmon having higher LC‐PUFA levels but lower 18:3n‐3 and 18:2n‐6 levels. In line with this, the VO diet decreased growth rate in wild but not domesticated salmon. Our study revealed a clear impact of domestication on transcriptomic regulation linked to metabolism and suggests that unintentional selection in the domestic environment has resulted in evolution of stronger compensatory mechanisms to a diet low in LC‐PUFAs.</description><subject>Aquaculture</subject><subject>Breeding</subject><subject>circadian regulation</subject><subject>Circadian rhythms</subject><subject>Diet</subject><subject>Domestication</subject><subject>Fatty acids</subject><subject>Fish oils</subject><subject>Gene expression</subject><subject>Glucose metabolism</subject><subject>Growth rate</subject><subject>Levels</subject><subject>Lipid metabolism</subject><subject>Lipid turnover</subject><subject>Lipids</subject><subject>long‐chain polyunsaturated fatty acids</subject><subject>Metabolism</subject><subject>Nutrient deficiency</subject><subject>Phospholipids</subject><subject>Polyunsaturated fatty acids</subject><subject>Salmo salar</subject><subject>Salmon</subject><subject>Synthesis</subject><subject>transcriptomics</subject><subject>vegetable oil</subject><subject>Vegetable oils</subject><subject>wild salmon</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10c1O3DAUBWALFcEUWPQFKkvd0EUG_yROvESjoUUaxIZK7CzHuZZM4zi1E6rZ9RF4Rp4E0wEWSHhzN5-OjnwQ-kLJkuZ35sEsaVWWYg8tKBdVwWR5-wktiBSsoKThh-hzSneEUM6q6gAdcsYkJzVZoN-r4Ecd9eTuAU9RD8lEN07BO5NwhHvQfcJd8JAmZ7IKw-O_B51SME5P0GELepojJBwsPp96PWSGk-59GHDvRtdhD5NuQ--SP0b7NsfBycs9Qr8u1jern8Xm-sfl6nxTGN40ogDaVtyAMFKS2pRWCK4FmIoClIwYUkvbCsKhKyXrKqZtY1vQYGvZdMJY4EfodJc7xvBnzs2Vd8lAn9tBmJNiXBIq6pKxTL-9o3dhjkNup1hJWV1z2oisvu-UiSGlCFaN0Xkdt4oS9byAyguo_wtk-_UlcW49dG_y9cszONuBv66H7cdJ6mq92kU-AfNJk3g</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Jin, Yang</creator><creator>Olsen, Rolf Erik</creator><creator>Harvey, Thomas Nelson</creator><creator>Østensen, Mari‐Ann</creator><creator>Li, Keshuai</creator><creator>Santi, Nina</creator><creator>Vadstein, Olav</creator><creator>Bones, Atle Magnar</creator><creator>Vik, Jon Olav</creator><creator>Sandve, Simen Rød</creator><creator>Olsen, Yngvar</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4989-5311</orcidid><orcidid>https://orcid.org/0000-0002-7778-4515</orcidid><orcidid>https://orcid.org/0000-0001-5597-8397</orcidid></search><sort><creationdate>202005</creationdate><title>Comparative transcriptomics reveals domestication‐associated features of Atlantic salmon lipid metabolism</title><author>Jin, Yang ; Olsen, Rolf Erik ; Harvey, Thomas Nelson ; Østensen, Mari‐Ann ; Li, Keshuai ; Santi, Nina ; Vadstein, Olav ; Bones, Atle Magnar ; Vik, Jon Olav ; Sandve, Simen Rød ; Olsen, Yngvar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3886-e1b53ce6c9907c4f663a6ec51ee420c079fb603ed492d52af8fbeaef798d6cfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aquaculture</topic><topic>Breeding</topic><topic>circadian regulation</topic><topic>Circadian rhythms</topic><topic>Diet</topic><topic>Domestication</topic><topic>Fatty acids</topic><topic>Fish oils</topic><topic>Gene expression</topic><topic>Glucose metabolism</topic><topic>Growth rate</topic><topic>Levels</topic><topic>Lipid metabolism</topic><topic>Lipid turnover</topic><topic>Lipids</topic><topic>long‐chain polyunsaturated fatty acids</topic><topic>Metabolism</topic><topic>Nutrient deficiency</topic><topic>Phospholipids</topic><topic>Polyunsaturated fatty acids</topic><topic>Salmo salar</topic><topic>Salmon</topic><topic>Synthesis</topic><topic>transcriptomics</topic><topic>vegetable oil</topic><topic>Vegetable oils</topic><topic>wild salmon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Yang</creatorcontrib><creatorcontrib>Olsen, Rolf Erik</creatorcontrib><creatorcontrib>Harvey, Thomas Nelson</creatorcontrib><creatorcontrib>Østensen, Mari‐Ann</creatorcontrib><creatorcontrib>Li, Keshuai</creatorcontrib><creatorcontrib>Santi, Nina</creatorcontrib><creatorcontrib>Vadstein, Olav</creatorcontrib><creatorcontrib>Bones, Atle Magnar</creatorcontrib><creatorcontrib>Vik, Jon Olav</creatorcontrib><creatorcontrib>Sandve, Simen Rød</creatorcontrib><creatorcontrib>Olsen, Yngvar</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Yang</au><au>Olsen, Rolf Erik</au><au>Harvey, Thomas Nelson</au><au>Østensen, Mari‐Ann</au><au>Li, Keshuai</au><au>Santi, Nina</au><au>Vadstein, Olav</au><au>Bones, Atle Magnar</au><au>Vik, Jon Olav</au><au>Sandve, Simen Rød</au><au>Olsen, Yngvar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative transcriptomics reveals domestication‐associated features of Atlantic salmon lipid metabolism</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2020-05</date><risdate>2020</risdate><volume>29</volume><issue>10</issue><spage>1860</spage><epage>1872</epage><pages>1860-1872</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Domestication of animals imposes strong targeted selection for desired traits but can also result in unintended selection due to new domestic environments. Atlantic salmon (Salmo salmar) was domesticated in the 1970s and has subsequently been selected for faster growth in systematic breeding programmes. More recently, salmon aquaculture has replaced fish oils (FOs) with vegetable oils (VOs) in feed, radically changing the levels of essential long‐chain polyunsaturated fatty acids (LC‐PUFAs). Our aim here was to study the impact of domestication on metabolism and explore the hypothesis that the shift to VO diets has unintentionally selected for a domestication‐specific lipid metabolism. We conducted a 96‐day feeding trial of domesticated and wild salmon fed diets based on FOs, VOs or phospholipids, and compared transcriptomes and fatty acids in tissues involved in lipid absorption (pyloric caeca) and lipid turnover and synthesis (liver). Domesticated salmon had faster growth and higher gene expression in glucose and lipid metabolism compared to wild fish, possibly linked to differences in regulation of circadian rhythm pathways. Only the domesticated salmon increased expression of LC‐PUFA synthesis genes when given VOs. This transcriptome response difference was mirrored at the physiological level, with domesticated salmon having higher LC‐PUFA levels but lower 18:3n‐3 and 18:2n‐6 levels. In line with this, the VO diet decreased growth rate in wild but not domesticated salmon. Our study revealed a clear impact of domestication on transcriptomic regulation linked to metabolism and suggests that unintentional selection in the domestic environment has resulted in evolution of stronger compensatory mechanisms to a diet low in LC‐PUFAs.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32293070</pmid><doi>10.1111/mec.15446</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4989-5311</orcidid><orcidid>https://orcid.org/0000-0002-7778-4515</orcidid><orcidid>https://orcid.org/0000-0001-5597-8397</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2020-05, Vol.29 (10), p.1860-1872
issn 0962-1083
1365-294X
language eng
recordid cdi_proquest_miscellaneous_2390167422
source Wiley Online Library Journals Frontfile Complete
subjects Aquaculture
Breeding
circadian regulation
Circadian rhythms
Diet
Domestication
Fatty acids
Fish oils
Gene expression
Glucose metabolism
Growth rate
Levels
Lipid metabolism
Lipid turnover
Lipids
long‐chain polyunsaturated fatty acids
Metabolism
Nutrient deficiency
Phospholipids
Polyunsaturated fatty acids
Salmo salar
Salmon
Synthesis
transcriptomics
vegetable oil
Vegetable oils
wild salmon
title Comparative transcriptomics reveals domestication‐associated features of Atlantic salmon lipid metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20transcriptomics%20reveals%20domestication%E2%80%90associated%20features%20of%20Atlantic%20salmon%20lipid%20metabolism&rft.jtitle=Molecular%20ecology&rft.au=Jin,%20Yang&rft.date=2020-05&rft.volume=29&rft.issue=10&rft.spage=1860&rft.epage=1872&rft.pages=1860-1872&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.15446&rft_dat=%3Cproquest_cross%3E2412773186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412773186&rft_id=info:pmid/32293070&rfr_iscdi=true