Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes

Lung cancer has a high mortality rate, but an early diagnosis can contribute to a favorable prognosis. A liquid biopsy that captures and detects tumor-related biomarkers in body fluids has great potential for early-stage diagnosis. Exosomes, nanosized extracellular vesicles found in blood, have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-05, Vol.14 (5), p.5435-5444
Hauptverfasser: Shin, Hyunku, Oh, Seunghyun, Hong, Soonwoo, Kang, Minsung, Kang, Daehyeon, Ji, Yong-gu, Choi, Byeong Hyeon, Kang, Ka-Won, Jeong, Hyesun, Park, Yong, Hong, Sunghoi, Kim, Hyun Koo, Choi, Yeonho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5444
container_issue 5
container_start_page 5435
container_title ACS nano
container_volume 14
creator Shin, Hyunku
Oh, Seunghyun
Hong, Soonwoo
Kang, Minsung
Kang, Daehyeon
Ji, Yong-gu
Choi, Byeong Hyeon
Kang, Ka-Won
Jeong, Hyesun
Park, Yong
Hong, Sunghoi
Kim, Hyun Koo
Choi, Yeonho
description Lung cancer has a high mortality rate, but an early diagnosis can contribute to a favorable prognosis. A liquid biopsy that captures and detects tumor-related biomarkers in body fluids has great potential for early-stage diagnosis. Exosomes, nanosized extracellular vesicles found in blood, have been proposed as promising biomarkers for liquid biopsy. Here, we demonstrate an accurate diagnosis of early-stage lung cancer, using deep learning-based surface-enhanced Raman spectroscopy (SERS) of the exosomes. Our approach was to explore the features of cell exosomes through deep learning and figure out the similarity in human plasma exosomes, without learning insufficient human data. The deep learning model was trained with SERS signals of exosomes derived from normal and lung cancer cell lines and could classify them with an accuracy of 95%. In 43 patients, including stage I and II cancer patients, the deep learning model predicted that plasma exosomes of 90.7% patients had higher similarity to lung cancer cell exosomes than the average of the healthy controls. Such similarity was proportional to the progression of cancer. Notably, the model predicted lung cancer with an area under the curve (AUC) of 0.912 for the whole cohort and stage I patients with an AUC of 0.910. These results suggest the great potential of the combination of exosome analysis and deep learning as a method for early-stage liquid biopsy of lung cancer.
doi_str_mv 10.1021/acsnano.9b09119
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2390154651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390154651</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-aa668f4bb41ffaeafec4f651faf611c09767d545a2c69727ee7e45aadc5c7c7c3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWqtnb5KjIGuT_UiaY631AwoequBtmU0ny8o2WZNdsP_eSGtvMoeZgWdemIeQK87uOEv5BHSwYN2dqpjiXB2REVeZSNhUfBwf5oKfkfMQPhkr5FSKU3KWpelUSJWNSL0A326TVQ810uVgazoHq9HThwZq60ITaLWlD4gdXSJ429g6uYeAa7rqUPfeBe26RtOZhXb7SztD543XQwt9ZOni2wW3wXBBTgy0AS_3fUzeHxdv8-dk-fr0Mp8tE8iU6hMAIaYmr6qcGwMIBnVuRMENGMG5ZkoKuS7yAlItlEwlosS4wVoXWsbKxuRml9t59zVg6MtNEzS2LVh0QyjTTDFe5DEyopMdquMXwaMpO99swG9Lzspfu-Xebrm3Gy-u9-FDtcH1gf_TGYHbHRAvy083-Ggl_Bv3A8YOh7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390154651</pqid></control><display><type>article</type><title>Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Shin, Hyunku ; Oh, Seunghyun ; Hong, Soonwoo ; Kang, Minsung ; Kang, Daehyeon ; Ji, Yong-gu ; Choi, Byeong Hyeon ; Kang, Ka-Won ; Jeong, Hyesun ; Park, Yong ; Hong, Sunghoi ; Kim, Hyun Koo ; Choi, Yeonho</creator><creatorcontrib>Shin, Hyunku ; Oh, Seunghyun ; Hong, Soonwoo ; Kang, Minsung ; Kang, Daehyeon ; Ji, Yong-gu ; Choi, Byeong Hyeon ; Kang, Ka-Won ; Jeong, Hyesun ; Park, Yong ; Hong, Sunghoi ; Kim, Hyun Koo ; Choi, Yeonho</creatorcontrib><description>Lung cancer has a high mortality rate, but an early diagnosis can contribute to a favorable prognosis. A liquid biopsy that captures and detects tumor-related biomarkers in body fluids has great potential for early-stage diagnosis. Exosomes, nanosized extracellular vesicles found in blood, have been proposed as promising biomarkers for liquid biopsy. Here, we demonstrate an accurate diagnosis of early-stage lung cancer, using deep learning-based surface-enhanced Raman spectroscopy (SERS) of the exosomes. Our approach was to explore the features of cell exosomes through deep learning and figure out the similarity in human plasma exosomes, without learning insufficient human data. The deep learning model was trained with SERS signals of exosomes derived from normal and lung cancer cell lines and could classify them with an accuracy of 95%. In 43 patients, including stage I and II cancer patients, the deep learning model predicted that plasma exosomes of 90.7% patients had higher similarity to lung cancer cell exosomes than the average of the healthy controls. Such similarity was proportional to the progression of cancer. Notably, the model predicted lung cancer with an area under the curve (AUC) of 0.912 for the whole cohort and stage I patients with an AUC of 0.910. These results suggest the great potential of the combination of exosome analysis and deep learning as a method for early-stage liquid biopsy of lung cancer.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.9b09119</identifier><identifier>PMID: 32286793</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biomarkers, Tumor ; Deep Learning ; Exosomes ; Humans ; Lung Neoplasms - diagnosis ; Spectrum Analysis, Raman</subject><ispartof>ACS nano, 2020-05, Vol.14 (5), p.5435-5444</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-aa668f4bb41ffaeafec4f651faf611c09767d545a2c69727ee7e45aadc5c7c7c3</citedby><cites>FETCH-LOGICAL-a399t-aa668f4bb41ffaeafec4f651faf611c09767d545a2c69727ee7e45aadc5c7c7c3</cites><orcidid>0000-0003-2018-3599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.9b09119$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.9b09119$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32286793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Hyunku</creatorcontrib><creatorcontrib>Oh, Seunghyun</creatorcontrib><creatorcontrib>Hong, Soonwoo</creatorcontrib><creatorcontrib>Kang, Minsung</creatorcontrib><creatorcontrib>Kang, Daehyeon</creatorcontrib><creatorcontrib>Ji, Yong-gu</creatorcontrib><creatorcontrib>Choi, Byeong Hyeon</creatorcontrib><creatorcontrib>Kang, Ka-Won</creatorcontrib><creatorcontrib>Jeong, Hyesun</creatorcontrib><creatorcontrib>Park, Yong</creatorcontrib><creatorcontrib>Hong, Sunghoi</creatorcontrib><creatorcontrib>Kim, Hyun Koo</creatorcontrib><creatorcontrib>Choi, Yeonho</creatorcontrib><title>Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Lung cancer has a high mortality rate, but an early diagnosis can contribute to a favorable prognosis. A liquid biopsy that captures and detects tumor-related biomarkers in body fluids has great potential for early-stage diagnosis. Exosomes, nanosized extracellular vesicles found in blood, have been proposed as promising biomarkers for liquid biopsy. Here, we demonstrate an accurate diagnosis of early-stage lung cancer, using deep learning-based surface-enhanced Raman spectroscopy (SERS) of the exosomes. Our approach was to explore the features of cell exosomes through deep learning and figure out the similarity in human plasma exosomes, without learning insufficient human data. The deep learning model was trained with SERS signals of exosomes derived from normal and lung cancer cell lines and could classify them with an accuracy of 95%. In 43 patients, including stage I and II cancer patients, the deep learning model predicted that plasma exosomes of 90.7% patients had higher similarity to lung cancer cell exosomes than the average of the healthy controls. Such similarity was proportional to the progression of cancer. Notably, the model predicted lung cancer with an area under the curve (AUC) of 0.912 for the whole cohort and stage I patients with an AUC of 0.910. These results suggest the great potential of the combination of exosome analysis and deep learning as a method for early-stage liquid biopsy of lung cancer.</description><subject>Biomarkers, Tumor</subject><subject>Deep Learning</subject><subject>Exosomes</subject><subject>Humans</subject><subject>Lung Neoplasms - diagnosis</subject><subject>Spectrum Analysis, Raman</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LAzEQhoMoWqtnb5KjIGuT_UiaY631AwoequBtmU0ny8o2WZNdsP_eSGtvMoeZgWdemIeQK87uOEv5BHSwYN2dqpjiXB2REVeZSNhUfBwf5oKfkfMQPhkr5FSKU3KWpelUSJWNSL0A326TVQ810uVgazoHq9HThwZq60ITaLWlD4gdXSJ429g6uYeAa7rqUPfeBe26RtOZhXb7SztD543XQwt9ZOni2wW3wXBBTgy0AS_3fUzeHxdv8-dk-fr0Mp8tE8iU6hMAIaYmr6qcGwMIBnVuRMENGMG5ZkoKuS7yAlItlEwlosS4wVoXWsbKxuRml9t59zVg6MtNEzS2LVh0QyjTTDFe5DEyopMdquMXwaMpO99swG9Lzspfu-Xebrm3Gy-u9-FDtcH1gf_TGYHbHRAvy083-Ggl_Bv3A8YOh7I</recordid><startdate>20200526</startdate><enddate>20200526</enddate><creator>Shin, Hyunku</creator><creator>Oh, Seunghyun</creator><creator>Hong, Soonwoo</creator><creator>Kang, Minsung</creator><creator>Kang, Daehyeon</creator><creator>Ji, Yong-gu</creator><creator>Choi, Byeong Hyeon</creator><creator>Kang, Ka-Won</creator><creator>Jeong, Hyesun</creator><creator>Park, Yong</creator><creator>Hong, Sunghoi</creator><creator>Kim, Hyun Koo</creator><creator>Choi, Yeonho</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2018-3599</orcidid></search><sort><creationdate>20200526</creationdate><title>Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes</title><author>Shin, Hyunku ; Oh, Seunghyun ; Hong, Soonwoo ; Kang, Minsung ; Kang, Daehyeon ; Ji, Yong-gu ; Choi, Byeong Hyeon ; Kang, Ka-Won ; Jeong, Hyesun ; Park, Yong ; Hong, Sunghoi ; Kim, Hyun Koo ; Choi, Yeonho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-aa668f4bb41ffaeafec4f651faf611c09767d545a2c69727ee7e45aadc5c7c7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomarkers, Tumor</topic><topic>Deep Learning</topic><topic>Exosomes</topic><topic>Humans</topic><topic>Lung Neoplasms - diagnosis</topic><topic>Spectrum Analysis, Raman</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Hyunku</creatorcontrib><creatorcontrib>Oh, Seunghyun</creatorcontrib><creatorcontrib>Hong, Soonwoo</creatorcontrib><creatorcontrib>Kang, Minsung</creatorcontrib><creatorcontrib>Kang, Daehyeon</creatorcontrib><creatorcontrib>Ji, Yong-gu</creatorcontrib><creatorcontrib>Choi, Byeong Hyeon</creatorcontrib><creatorcontrib>Kang, Ka-Won</creatorcontrib><creatorcontrib>Jeong, Hyesun</creatorcontrib><creatorcontrib>Park, Yong</creatorcontrib><creatorcontrib>Hong, Sunghoi</creatorcontrib><creatorcontrib>Kim, Hyun Koo</creatorcontrib><creatorcontrib>Choi, Yeonho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Hyunku</au><au>Oh, Seunghyun</au><au>Hong, Soonwoo</au><au>Kang, Minsung</au><au>Kang, Daehyeon</au><au>Ji, Yong-gu</au><au>Choi, Byeong Hyeon</au><au>Kang, Ka-Won</au><au>Jeong, Hyesun</au><au>Park, Yong</au><au>Hong, Sunghoi</au><au>Kim, Hyun Koo</au><au>Choi, Yeonho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-05-26</date><risdate>2020</risdate><volume>14</volume><issue>5</issue><spage>5435</spage><epage>5444</epage><pages>5435-5444</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Lung cancer has a high mortality rate, but an early diagnosis can contribute to a favorable prognosis. A liquid biopsy that captures and detects tumor-related biomarkers in body fluids has great potential for early-stage diagnosis. Exosomes, nanosized extracellular vesicles found in blood, have been proposed as promising biomarkers for liquid biopsy. Here, we demonstrate an accurate diagnosis of early-stage lung cancer, using deep learning-based surface-enhanced Raman spectroscopy (SERS) of the exosomes. Our approach was to explore the features of cell exosomes through deep learning and figure out the similarity in human plasma exosomes, without learning insufficient human data. The deep learning model was trained with SERS signals of exosomes derived from normal and lung cancer cell lines and could classify them with an accuracy of 95%. In 43 patients, including stage I and II cancer patients, the deep learning model predicted that plasma exosomes of 90.7% patients had higher similarity to lung cancer cell exosomes than the average of the healthy controls. Such similarity was proportional to the progression of cancer. Notably, the model predicted lung cancer with an area under the curve (AUC) of 0.912 for the whole cohort and stage I patients with an AUC of 0.910. These results suggest the great potential of the combination of exosome analysis and deep learning as a method for early-stage liquid biopsy of lung cancer.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32286793</pmid><doi>10.1021/acsnano.9b09119</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2018-3599</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2020-05, Vol.14 (5), p.5435-5444
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2390154651
source MEDLINE; American Chemical Society Journals
subjects Biomarkers, Tumor
Deep Learning
Exosomes
Humans
Lung Neoplasms - diagnosis
Spectrum Analysis, Raman
title Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early-Stage%20Lung%20Cancer%20Diagnosis%20by%20Deep%20Learning-Based%20Spectroscopic%20Analysis%20of%20Circulating%20Exosomes&rft.jtitle=ACS%20nano&rft.au=Shin,%20Hyunku&rft.date=2020-05-26&rft.volume=14&rft.issue=5&rft.spage=5435&rft.epage=5444&rft.pages=5435-5444&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.9b09119&rft_dat=%3Cproquest_cross%3E2390154651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390154651&rft_id=info:pmid/32286793&rfr_iscdi=true