Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes
Lung cancer has a high mortality rate, but an early diagnosis can contribute to a favorable prognosis. A liquid biopsy that captures and detects tumor-related biomarkers in body fluids has great potential for early-stage diagnosis. Exosomes, nanosized extracellular vesicles found in blood, have been...
Gespeichert in:
Veröffentlicht in: | ACS nano 2020-05, Vol.14 (5), p.5435-5444 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5444 |
---|---|
container_issue | 5 |
container_start_page | 5435 |
container_title | ACS nano |
container_volume | 14 |
creator | Shin, Hyunku Oh, Seunghyun Hong, Soonwoo Kang, Minsung Kang, Daehyeon Ji, Yong-gu Choi, Byeong Hyeon Kang, Ka-Won Jeong, Hyesun Park, Yong Hong, Sunghoi Kim, Hyun Koo Choi, Yeonho |
description | Lung cancer has a high mortality rate, but an early diagnosis can contribute to a favorable prognosis. A liquid biopsy that captures and detects tumor-related biomarkers in body fluids has great potential for early-stage diagnosis. Exosomes, nanosized extracellular vesicles found in blood, have been proposed as promising biomarkers for liquid biopsy. Here, we demonstrate an accurate diagnosis of early-stage lung cancer, using deep learning-based surface-enhanced Raman spectroscopy (SERS) of the exosomes. Our approach was to explore the features of cell exosomes through deep learning and figure out the similarity in human plasma exosomes, without learning insufficient human data. The deep learning model was trained with SERS signals of exosomes derived from normal and lung cancer cell lines and could classify them with an accuracy of 95%. In 43 patients, including stage I and II cancer patients, the deep learning model predicted that plasma exosomes of 90.7% patients had higher similarity to lung cancer cell exosomes than the average of the healthy controls. Such similarity was proportional to the progression of cancer. Notably, the model predicted lung cancer with an area under the curve (AUC) of 0.912 for the whole cohort and stage I patients with an AUC of 0.910. These results suggest the great potential of the combination of exosome analysis and deep learning as a method for early-stage liquid biopsy of lung cancer. |
doi_str_mv | 10.1021/acsnano.9b09119 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2390154651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390154651</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-aa668f4bb41ffaeafec4f651faf611c09767d545a2c69727ee7e45aadc5c7c7c3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWqtnb5KjIGuT_UiaY631AwoequBtmU0ny8o2WZNdsP_eSGtvMoeZgWdemIeQK87uOEv5BHSwYN2dqpjiXB2REVeZSNhUfBwf5oKfkfMQPhkr5FSKU3KWpelUSJWNSL0A326TVQ810uVgazoHq9HThwZq60ITaLWlD4gdXSJ429g6uYeAa7rqUPfeBe26RtOZhXb7SztD543XQwt9ZOni2wW3wXBBTgy0AS_3fUzeHxdv8-dk-fr0Mp8tE8iU6hMAIaYmr6qcGwMIBnVuRMENGMG5ZkoKuS7yAlItlEwlosS4wVoXWsbKxuRml9t59zVg6MtNEzS2LVh0QyjTTDFe5DEyopMdquMXwaMpO99swG9Lzspfu-Xebrm3Gy-u9-FDtcH1gf_TGYHbHRAvy083-Ggl_Bv3A8YOh7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390154651</pqid></control><display><type>article</type><title>Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Shin, Hyunku ; Oh, Seunghyun ; Hong, Soonwoo ; Kang, Minsung ; Kang, Daehyeon ; Ji, Yong-gu ; Choi, Byeong Hyeon ; Kang, Ka-Won ; Jeong, Hyesun ; Park, Yong ; Hong, Sunghoi ; Kim, Hyun Koo ; Choi, Yeonho</creator><creatorcontrib>Shin, Hyunku ; Oh, Seunghyun ; Hong, Soonwoo ; Kang, Minsung ; Kang, Daehyeon ; Ji, Yong-gu ; Choi, Byeong Hyeon ; Kang, Ka-Won ; Jeong, Hyesun ; Park, Yong ; Hong, Sunghoi ; Kim, Hyun Koo ; Choi, Yeonho</creatorcontrib><description>Lung cancer has a high mortality rate, but an early diagnosis can contribute to a favorable prognosis. A liquid biopsy that captures and detects tumor-related biomarkers in body fluids has great potential for early-stage diagnosis. Exosomes, nanosized extracellular vesicles found in blood, have been proposed as promising biomarkers for liquid biopsy. Here, we demonstrate an accurate diagnosis of early-stage lung cancer, using deep learning-based surface-enhanced Raman spectroscopy (SERS) of the exosomes. Our approach was to explore the features of cell exosomes through deep learning and figure out the similarity in human plasma exosomes, without learning insufficient human data. The deep learning model was trained with SERS signals of exosomes derived from normal and lung cancer cell lines and could classify them with an accuracy of 95%. In 43 patients, including stage I and II cancer patients, the deep learning model predicted that plasma exosomes of 90.7% patients had higher similarity to lung cancer cell exosomes than the average of the healthy controls. Such similarity was proportional to the progression of cancer. Notably, the model predicted lung cancer with an area under the curve (AUC) of 0.912 for the whole cohort and stage I patients with an AUC of 0.910. These results suggest the great potential of the combination of exosome analysis and deep learning as a method for early-stage liquid biopsy of lung cancer.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.9b09119</identifier><identifier>PMID: 32286793</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biomarkers, Tumor ; Deep Learning ; Exosomes ; Humans ; Lung Neoplasms - diagnosis ; Spectrum Analysis, Raman</subject><ispartof>ACS nano, 2020-05, Vol.14 (5), p.5435-5444</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-aa668f4bb41ffaeafec4f651faf611c09767d545a2c69727ee7e45aadc5c7c7c3</citedby><cites>FETCH-LOGICAL-a399t-aa668f4bb41ffaeafec4f651faf611c09767d545a2c69727ee7e45aadc5c7c7c3</cites><orcidid>0000-0003-2018-3599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.9b09119$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.9b09119$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32286793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Hyunku</creatorcontrib><creatorcontrib>Oh, Seunghyun</creatorcontrib><creatorcontrib>Hong, Soonwoo</creatorcontrib><creatorcontrib>Kang, Minsung</creatorcontrib><creatorcontrib>Kang, Daehyeon</creatorcontrib><creatorcontrib>Ji, Yong-gu</creatorcontrib><creatorcontrib>Choi, Byeong Hyeon</creatorcontrib><creatorcontrib>Kang, Ka-Won</creatorcontrib><creatorcontrib>Jeong, Hyesun</creatorcontrib><creatorcontrib>Park, Yong</creatorcontrib><creatorcontrib>Hong, Sunghoi</creatorcontrib><creatorcontrib>Kim, Hyun Koo</creatorcontrib><creatorcontrib>Choi, Yeonho</creatorcontrib><title>Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Lung cancer has a high mortality rate, but an early diagnosis can contribute to a favorable prognosis. A liquid biopsy that captures and detects tumor-related biomarkers in body fluids has great potential for early-stage diagnosis. Exosomes, nanosized extracellular vesicles found in blood, have been proposed as promising biomarkers for liquid biopsy. Here, we demonstrate an accurate diagnosis of early-stage lung cancer, using deep learning-based surface-enhanced Raman spectroscopy (SERS) of the exosomes. Our approach was to explore the features of cell exosomes through deep learning and figure out the similarity in human plasma exosomes, without learning insufficient human data. The deep learning model was trained with SERS signals of exosomes derived from normal and lung cancer cell lines and could classify them with an accuracy of 95%. In 43 patients, including stage I and II cancer patients, the deep learning model predicted that plasma exosomes of 90.7% patients had higher similarity to lung cancer cell exosomes than the average of the healthy controls. Such similarity was proportional to the progression of cancer. Notably, the model predicted lung cancer with an area under the curve (AUC) of 0.912 for the whole cohort and stage I patients with an AUC of 0.910. These results suggest the great potential of the combination of exosome analysis and deep learning as a method for early-stage liquid biopsy of lung cancer.</description><subject>Biomarkers, Tumor</subject><subject>Deep Learning</subject><subject>Exosomes</subject><subject>Humans</subject><subject>Lung Neoplasms - diagnosis</subject><subject>Spectrum Analysis, Raman</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LAzEQhoMoWqtnb5KjIGuT_UiaY631AwoequBtmU0ny8o2WZNdsP_eSGtvMoeZgWdemIeQK87uOEv5BHSwYN2dqpjiXB2REVeZSNhUfBwf5oKfkfMQPhkr5FSKU3KWpelUSJWNSL0A326TVQ810uVgazoHq9HThwZq60ITaLWlD4gdXSJ429g6uYeAa7rqUPfeBe26RtOZhXb7SztD543XQwt9ZOni2wW3wXBBTgy0AS_3fUzeHxdv8-dk-fr0Mp8tE8iU6hMAIaYmr6qcGwMIBnVuRMENGMG5ZkoKuS7yAlItlEwlosS4wVoXWsbKxuRml9t59zVg6MtNEzS2LVh0QyjTTDFe5DEyopMdquMXwaMpO99swG9Lzspfu-Xebrm3Gy-u9-FDtcH1gf_TGYHbHRAvy083-Ggl_Bv3A8YOh7I</recordid><startdate>20200526</startdate><enddate>20200526</enddate><creator>Shin, Hyunku</creator><creator>Oh, Seunghyun</creator><creator>Hong, Soonwoo</creator><creator>Kang, Minsung</creator><creator>Kang, Daehyeon</creator><creator>Ji, Yong-gu</creator><creator>Choi, Byeong Hyeon</creator><creator>Kang, Ka-Won</creator><creator>Jeong, Hyesun</creator><creator>Park, Yong</creator><creator>Hong, Sunghoi</creator><creator>Kim, Hyun Koo</creator><creator>Choi, Yeonho</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2018-3599</orcidid></search><sort><creationdate>20200526</creationdate><title>Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes</title><author>Shin, Hyunku ; Oh, Seunghyun ; Hong, Soonwoo ; Kang, Minsung ; Kang, Daehyeon ; Ji, Yong-gu ; Choi, Byeong Hyeon ; Kang, Ka-Won ; Jeong, Hyesun ; Park, Yong ; Hong, Sunghoi ; Kim, Hyun Koo ; Choi, Yeonho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-aa668f4bb41ffaeafec4f651faf611c09767d545a2c69727ee7e45aadc5c7c7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomarkers, Tumor</topic><topic>Deep Learning</topic><topic>Exosomes</topic><topic>Humans</topic><topic>Lung Neoplasms - diagnosis</topic><topic>Spectrum Analysis, Raman</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Hyunku</creatorcontrib><creatorcontrib>Oh, Seunghyun</creatorcontrib><creatorcontrib>Hong, Soonwoo</creatorcontrib><creatorcontrib>Kang, Minsung</creatorcontrib><creatorcontrib>Kang, Daehyeon</creatorcontrib><creatorcontrib>Ji, Yong-gu</creatorcontrib><creatorcontrib>Choi, Byeong Hyeon</creatorcontrib><creatorcontrib>Kang, Ka-Won</creatorcontrib><creatorcontrib>Jeong, Hyesun</creatorcontrib><creatorcontrib>Park, Yong</creatorcontrib><creatorcontrib>Hong, Sunghoi</creatorcontrib><creatorcontrib>Kim, Hyun Koo</creatorcontrib><creatorcontrib>Choi, Yeonho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Hyunku</au><au>Oh, Seunghyun</au><au>Hong, Soonwoo</au><au>Kang, Minsung</au><au>Kang, Daehyeon</au><au>Ji, Yong-gu</au><au>Choi, Byeong Hyeon</au><au>Kang, Ka-Won</au><au>Jeong, Hyesun</au><au>Park, Yong</au><au>Hong, Sunghoi</au><au>Kim, Hyun Koo</au><au>Choi, Yeonho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-05-26</date><risdate>2020</risdate><volume>14</volume><issue>5</issue><spage>5435</spage><epage>5444</epage><pages>5435-5444</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Lung cancer has a high mortality rate, but an early diagnosis can contribute to a favorable prognosis. A liquid biopsy that captures and detects tumor-related biomarkers in body fluids has great potential for early-stage diagnosis. Exosomes, nanosized extracellular vesicles found in blood, have been proposed as promising biomarkers for liquid biopsy. Here, we demonstrate an accurate diagnosis of early-stage lung cancer, using deep learning-based surface-enhanced Raman spectroscopy (SERS) of the exosomes. Our approach was to explore the features of cell exosomes through deep learning and figure out the similarity in human plasma exosomes, without learning insufficient human data. The deep learning model was trained with SERS signals of exosomes derived from normal and lung cancer cell lines and could classify them with an accuracy of 95%. In 43 patients, including stage I and II cancer patients, the deep learning model predicted that plasma exosomes of 90.7% patients had higher similarity to lung cancer cell exosomes than the average of the healthy controls. Such similarity was proportional to the progression of cancer. Notably, the model predicted lung cancer with an area under the curve (AUC) of 0.912 for the whole cohort and stage I patients with an AUC of 0.910. These results suggest the great potential of the combination of exosome analysis and deep learning as a method for early-stage liquid biopsy of lung cancer.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32286793</pmid><doi>10.1021/acsnano.9b09119</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2018-3599</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2020-05, Vol.14 (5), p.5435-5444 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2390154651 |
source | MEDLINE; American Chemical Society Journals |
subjects | Biomarkers, Tumor Deep Learning Exosomes Humans Lung Neoplasms - diagnosis Spectrum Analysis, Raman |
title | Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early-Stage%20Lung%20Cancer%20Diagnosis%20by%20Deep%20Learning-Based%20Spectroscopic%20Analysis%20of%20Circulating%20Exosomes&rft.jtitle=ACS%20nano&rft.au=Shin,%20Hyunku&rft.date=2020-05-26&rft.volume=14&rft.issue=5&rft.spage=5435&rft.epage=5444&rft.pages=5435-5444&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.9b09119&rft_dat=%3Cproquest_cross%3E2390154651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390154651&rft_id=info:pmid/32286793&rfr_iscdi=true |