Directed evolution of adenine base editors with increased activity and therapeutic application

The foundational adenine base editors (for example, ABE7.10) enable programmable A•T to G•C point mutations but editing efficiencies can be low at challenging loci in primary human cells. Here we further evolve ABE7.10 using a library of adenosine deaminase variants to create ABE8s. At NGG protospac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2020-07, Vol.38 (7), p.892-900
Hauptverfasser: Gaudelli, Nicole M., Lam, Dieter K., Rees, Holly A., Solá-Esteves, Noris M., Barrera, Luis A., Born, David A., Edwards, Aaron, Gehrke, Jason M., Lee, Seung-Joo, Liquori, Alexander J., Murray, Ryan, Packer, Michael S., Rinaldi, Conrad, Slaymaker, Ian M., Yen, Jonathan, Young, Lauren E., Ciaramella, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 900
container_issue 7
container_start_page 892
container_title Nature biotechnology
container_volume 38
creator Gaudelli, Nicole M.
Lam, Dieter K.
Rees, Holly A.
Solá-Esteves, Noris M.
Barrera, Luis A.
Born, David A.
Edwards, Aaron
Gehrke, Jason M.
Lee, Seung-Joo
Liquori, Alexander J.
Murray, Ryan
Packer, Michael S.
Rinaldi, Conrad
Slaymaker, Ian M.
Yen, Jonathan
Young, Lauren E.
Ciaramella, Giuseppe
description The foundational adenine base editors (for example, ABE7.10) enable programmable A•T to G•C point mutations but editing efficiencies can be low at challenging loci in primary human cells. Here we further evolve ABE7.10 using a library of adenosine deaminase variants to create ABE8s. At NGG protospacer adjacent motif (PAM) sites, ABE8s result in ~1.5× higher editing at protospacer positions A5–A7 and ~3.2× higher editing at positions A3–A4 and A8–A10 compared with ABE7.10. Non-NGG PAM variants have a ~4.2-fold overall higher on-target editing efficiency than ABE7.10. In human CD34 + cells, ABE8 can recreate a natural allele at the promoter of the γ-globin genes HBG1 and HBG2 with up to 60% efficiency, causing persistence of fetal hemoglobin. In primary human T cells, ABE8s achieve 98–99% target modification, which is maintained when multiplexed across three loci. Delivered as messenger RNA, ABE8s induce no significant levels of single guide RNA (sgRNA)-independent off-target adenine deamination in genomic DNA and very low levels of adenine deamination in cellular mRNA. Adenine base editors are evolved to be more efficient and more compatible with Cas9 variants.
doi_str_mv 10.1038/s41587-020-0491-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2389693294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A629082978</galeid><sourcerecordid>A629082978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c615t-8c4119bd58ef4834926a0c069b9ab1393d1350cfe15d573812b1c0cab302daba3</originalsourceid><addsrcrecordid>eNqNkltrFTEUhQdRbK3-AF8k4IsFp-Y-yWOpVQuFgrdHQybZc07KnJnTJFPtvzfDVO0RFQkkYedbK2FnVdVTgo8IZupV4kSopsYU15hrUst71T4RXNZEanm_7PF8SoTcqx6ldIkxllzKh9Ueo1RxoeR-9eV1iOAyeATXYz_lMA5o7JD1MIQBUGsTIPAhjzGhryGvURhchFL1yLocrkO-QXbwKK8h2i0UA4fsdtsHZ2evx9WDzvYJntyuB9WnN6cfT97V5xdvz06Oz2snici1cpwQ3XqhoOOKcU2lxQ5L3WrbEqaZJ0xg1wERXjRMEdoSh51tGabetpYdVC8W320cryZI2WxCctD3doBxSoYypaVmVPOCPv8NvRynOJTXGcob2TCtSfNvihIqOKF3vFa2BxOGbszRuvlqcyypxorqRhXq6A9UGR42wY0DdKHUdwSHO4LCZPiWV3ZKyZx9eP__7MXnXfblHbadUvniVKYUVuucFskOThbcxTGlCJ3ZxrCx8cYQbOYAmiWApgTQzAE0smie3fZtajfgfyp-JK4AdAFSORpWEH819u-u3wG31OGZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421254124</pqid></control><display><type>article</type><title>Directed evolution of adenine base editors with increased activity and therapeutic application</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Gaudelli, Nicole M. ; Lam, Dieter K. ; Rees, Holly A. ; Solá-Esteves, Noris M. ; Barrera, Luis A. ; Born, David A. ; Edwards, Aaron ; Gehrke, Jason M. ; Lee, Seung-Joo ; Liquori, Alexander J. ; Murray, Ryan ; Packer, Michael S. ; Rinaldi, Conrad ; Slaymaker, Ian M. ; Yen, Jonathan ; Young, Lauren E. ; Ciaramella, Giuseppe</creator><creatorcontrib>Gaudelli, Nicole M. ; Lam, Dieter K. ; Rees, Holly A. ; Solá-Esteves, Noris M. ; Barrera, Luis A. ; Born, David A. ; Edwards, Aaron ; Gehrke, Jason M. ; Lee, Seung-Joo ; Liquori, Alexander J. ; Murray, Ryan ; Packer, Michael S. ; Rinaldi, Conrad ; Slaymaker, Ian M. ; Yen, Jonathan ; Young, Lauren E. ; Ciaramella, Giuseppe</creatorcontrib><description>The foundational adenine base editors (for example, ABE7.10) enable programmable A•T to G•C point mutations but editing efficiencies can be low at challenging loci in primary human cells. Here we further evolve ABE7.10 using a library of adenosine deaminase variants to create ABE8s. At NGG protospacer adjacent motif (PAM) sites, ABE8s result in ~1.5× higher editing at protospacer positions A5–A7 and ~3.2× higher editing at positions A3–A4 and A8–A10 compared with ABE7.10. Non-NGG PAM variants have a ~4.2-fold overall higher on-target editing efficiency than ABE7.10. In human CD34 + cells, ABE8 can recreate a natural allele at the promoter of the γ-globin genes HBG1 and HBG2 with up to 60% efficiency, causing persistence of fetal hemoglobin. In primary human T cells, ABE8s achieve 98–99% target modification, which is maintained when multiplexed across three loci. Delivered as messenger RNA, ABE8s induce no significant levels of single guide RNA (sgRNA)-independent off-target adenine deamination in genomic DNA and very low levels of adenine deamination in cellular mRNA. Adenine base editors are evolved to be more efficient and more compatible with Cas9 variants.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-020-0491-6</identifier><identifier>PMID: 32284586</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/61/338/469 ; 631/61/51/2314 ; Adenine ; Adenine - metabolism ; Adenosine ; Adenosine Deaminase ; Agriculture ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; CD34 antigen ; CRISPR-Cas Systems - genetics ; Cytosine - metabolism ; Deamination ; Deoxyribonucleic acid ; Directed evolution ; DNA ; DNA - genetics ; Editing ; Evolution ; Fetuses ; Gene Editing - methods ; HEK293 Cells ; Hemoglobin ; Humans ; Levels ; Life Sciences ; Loci ; Lymphocytes ; Lymphocytes T ; mRNA ; Mutation ; Mutation - genetics ; Physiological aspects ; Ribonucleic acid ; RNA ; RNA, Guide, CRISPR-Cas Systems</subject><ispartof>Nature biotechnology, 2020-07, Vol.38 (7), p.892-900</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c615t-8c4119bd58ef4834926a0c069b9ab1393d1350cfe15d573812b1c0cab302daba3</citedby><cites>FETCH-LOGICAL-c615t-8c4119bd58ef4834926a0c069b9ab1393d1350cfe15d573812b1c0cab302daba3</cites><orcidid>0000-0001-8608-4855 ; 0000-0003-0612-6416 ; 0000-0003-3339-7211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32284586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaudelli, Nicole M.</creatorcontrib><creatorcontrib>Lam, Dieter K.</creatorcontrib><creatorcontrib>Rees, Holly A.</creatorcontrib><creatorcontrib>Solá-Esteves, Noris M.</creatorcontrib><creatorcontrib>Barrera, Luis A.</creatorcontrib><creatorcontrib>Born, David A.</creatorcontrib><creatorcontrib>Edwards, Aaron</creatorcontrib><creatorcontrib>Gehrke, Jason M.</creatorcontrib><creatorcontrib>Lee, Seung-Joo</creatorcontrib><creatorcontrib>Liquori, Alexander J.</creatorcontrib><creatorcontrib>Murray, Ryan</creatorcontrib><creatorcontrib>Packer, Michael S.</creatorcontrib><creatorcontrib>Rinaldi, Conrad</creatorcontrib><creatorcontrib>Slaymaker, Ian M.</creatorcontrib><creatorcontrib>Yen, Jonathan</creatorcontrib><creatorcontrib>Young, Lauren E.</creatorcontrib><creatorcontrib>Ciaramella, Giuseppe</creatorcontrib><title>Directed evolution of adenine base editors with increased activity and therapeutic application</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>The foundational adenine base editors (for example, ABE7.10) enable programmable A•T to G•C point mutations but editing efficiencies can be low at challenging loci in primary human cells. Here we further evolve ABE7.10 using a library of adenosine deaminase variants to create ABE8s. At NGG protospacer adjacent motif (PAM) sites, ABE8s result in ~1.5× higher editing at protospacer positions A5–A7 and ~3.2× higher editing at positions A3–A4 and A8–A10 compared with ABE7.10. Non-NGG PAM variants have a ~4.2-fold overall higher on-target editing efficiency than ABE7.10. In human CD34 + cells, ABE8 can recreate a natural allele at the promoter of the γ-globin genes HBG1 and HBG2 with up to 60% efficiency, causing persistence of fetal hemoglobin. In primary human T cells, ABE8s achieve 98–99% target modification, which is maintained when multiplexed across three loci. Delivered as messenger RNA, ABE8s induce no significant levels of single guide RNA (sgRNA)-independent off-target adenine deamination in genomic DNA and very low levels of adenine deamination in cellular mRNA. Adenine base editors are evolved to be more efficient and more compatible with Cas9 variants.</description><subject>631/61/338/469</subject><subject>631/61/51/2314</subject><subject>Adenine</subject><subject>Adenine - metabolism</subject><subject>Adenosine</subject><subject>Adenosine Deaminase</subject><subject>Agriculture</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>CD34 antigen</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Cytosine - metabolism</subject><subject>Deamination</subject><subject>Deoxyribonucleic acid</subject><subject>Directed evolution</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>Editing</subject><subject>Evolution</subject><subject>Fetuses</subject><subject>Gene Editing - methods</subject><subject>HEK293 Cells</subject><subject>Hemoglobin</subject><subject>Humans</subject><subject>Levels</subject><subject>Life Sciences</subject><subject>Loci</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>mRNA</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Physiological aspects</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Guide, CRISPR-Cas Systems</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkltrFTEUhQdRbK3-AF8k4IsFp-Y-yWOpVQuFgrdHQybZc07KnJnTJFPtvzfDVO0RFQkkYedbK2FnVdVTgo8IZupV4kSopsYU15hrUst71T4RXNZEanm_7PF8SoTcqx6ldIkxllzKh9Ueo1RxoeR-9eV1iOAyeATXYz_lMA5o7JD1MIQBUGsTIPAhjzGhryGvURhchFL1yLocrkO-QXbwKK8h2i0UA4fsdtsHZ2evx9WDzvYJntyuB9WnN6cfT97V5xdvz06Oz2snici1cpwQ3XqhoOOKcU2lxQ5L3WrbEqaZJ0xg1wERXjRMEdoSh51tGabetpYdVC8W320cryZI2WxCctD3doBxSoYypaVmVPOCPv8NvRynOJTXGcob2TCtSfNvihIqOKF3vFa2BxOGbszRuvlqcyypxorqRhXq6A9UGR42wY0DdKHUdwSHO4LCZPiWV3ZKyZx9eP__7MXnXfblHbadUvniVKYUVuucFskOThbcxTGlCJ3ZxrCx8cYQbOYAmiWApgTQzAE0smie3fZtajfgfyp-JK4AdAFSORpWEH819u-u3wG31OGZ</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Gaudelli, Nicole M.</creator><creator>Lam, Dieter K.</creator><creator>Rees, Holly A.</creator><creator>Solá-Esteves, Noris M.</creator><creator>Barrera, Luis A.</creator><creator>Born, David A.</creator><creator>Edwards, Aaron</creator><creator>Gehrke, Jason M.</creator><creator>Lee, Seung-Joo</creator><creator>Liquori, Alexander J.</creator><creator>Murray, Ryan</creator><creator>Packer, Michael S.</creator><creator>Rinaldi, Conrad</creator><creator>Slaymaker, Ian M.</creator><creator>Yen, Jonathan</creator><creator>Young, Lauren E.</creator><creator>Ciaramella, Giuseppe</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8608-4855</orcidid><orcidid>https://orcid.org/0000-0003-0612-6416</orcidid><orcidid>https://orcid.org/0000-0003-3339-7211</orcidid></search><sort><creationdate>20200701</creationdate><title>Directed evolution of adenine base editors with increased activity and therapeutic application</title><author>Gaudelli, Nicole M. ; Lam, Dieter K. ; Rees, Holly A. ; Solá-Esteves, Noris M. ; Barrera, Luis A. ; Born, David A. ; Edwards, Aaron ; Gehrke, Jason M. ; Lee, Seung-Joo ; Liquori, Alexander J. ; Murray, Ryan ; Packer, Michael S. ; Rinaldi, Conrad ; Slaymaker, Ian M. ; Yen, Jonathan ; Young, Lauren E. ; Ciaramella, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c615t-8c4119bd58ef4834926a0c069b9ab1393d1350cfe15d573812b1c0cab302daba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/61/338/469</topic><topic>631/61/51/2314</topic><topic>Adenine</topic><topic>Adenine - metabolism</topic><topic>Adenosine</topic><topic>Adenosine Deaminase</topic><topic>Agriculture</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>CD34 antigen</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Cytosine - metabolism</topic><topic>Deamination</topic><topic>Deoxyribonucleic acid</topic><topic>Directed evolution</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>Editing</topic><topic>Evolution</topic><topic>Fetuses</topic><topic>Gene Editing - methods</topic><topic>HEK293 Cells</topic><topic>Hemoglobin</topic><topic>Humans</topic><topic>Levels</topic><topic>Life Sciences</topic><topic>Loci</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>mRNA</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Physiological aspects</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Guide, CRISPR-Cas Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaudelli, Nicole M.</creatorcontrib><creatorcontrib>Lam, Dieter K.</creatorcontrib><creatorcontrib>Rees, Holly A.</creatorcontrib><creatorcontrib>Solá-Esteves, Noris M.</creatorcontrib><creatorcontrib>Barrera, Luis A.</creatorcontrib><creatorcontrib>Born, David A.</creatorcontrib><creatorcontrib>Edwards, Aaron</creatorcontrib><creatorcontrib>Gehrke, Jason M.</creatorcontrib><creatorcontrib>Lee, Seung-Joo</creatorcontrib><creatorcontrib>Liquori, Alexander J.</creatorcontrib><creatorcontrib>Murray, Ryan</creatorcontrib><creatorcontrib>Packer, Michael S.</creatorcontrib><creatorcontrib>Rinaldi, Conrad</creatorcontrib><creatorcontrib>Slaymaker, Ian M.</creatorcontrib><creatorcontrib>Yen, Jonathan</creatorcontrib><creatorcontrib>Young, Lauren E.</creatorcontrib><creatorcontrib>Ciaramella, Giuseppe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaudelli, Nicole M.</au><au>Lam, Dieter K.</au><au>Rees, Holly A.</au><au>Solá-Esteves, Noris M.</au><au>Barrera, Luis A.</au><au>Born, David A.</au><au>Edwards, Aaron</au><au>Gehrke, Jason M.</au><au>Lee, Seung-Joo</au><au>Liquori, Alexander J.</au><au>Murray, Ryan</au><au>Packer, Michael S.</au><au>Rinaldi, Conrad</au><au>Slaymaker, Ian M.</au><au>Yen, Jonathan</au><au>Young, Lauren E.</au><au>Ciaramella, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directed evolution of adenine base editors with increased activity and therapeutic application</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>38</volume><issue>7</issue><spage>892</spage><epage>900</epage><pages>892-900</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>The foundational adenine base editors (for example, ABE7.10) enable programmable A•T to G•C point mutations but editing efficiencies can be low at challenging loci in primary human cells. Here we further evolve ABE7.10 using a library of adenosine deaminase variants to create ABE8s. At NGG protospacer adjacent motif (PAM) sites, ABE8s result in ~1.5× higher editing at protospacer positions A5–A7 and ~3.2× higher editing at positions A3–A4 and A8–A10 compared with ABE7.10. Non-NGG PAM variants have a ~4.2-fold overall higher on-target editing efficiency than ABE7.10. In human CD34 + cells, ABE8 can recreate a natural allele at the promoter of the γ-globin genes HBG1 and HBG2 with up to 60% efficiency, causing persistence of fetal hemoglobin. In primary human T cells, ABE8s achieve 98–99% target modification, which is maintained when multiplexed across three loci. Delivered as messenger RNA, ABE8s induce no significant levels of single guide RNA (sgRNA)-independent off-target adenine deamination in genomic DNA and very low levels of adenine deamination in cellular mRNA. Adenine base editors are evolved to be more efficient and more compatible with Cas9 variants.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32284586</pmid><doi>10.1038/s41587-020-0491-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8608-4855</orcidid><orcidid>https://orcid.org/0000-0003-0612-6416</orcidid><orcidid>https://orcid.org/0000-0003-3339-7211</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2020-07, Vol.38 (7), p.892-900
issn 1087-0156
1546-1696
language eng
recordid cdi_proquest_miscellaneous_2389693294
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/61/338/469
631/61/51/2314
Adenine
Adenine - metabolism
Adenosine
Adenosine Deaminase
Agriculture
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
CD34 antigen
CRISPR-Cas Systems - genetics
Cytosine - metabolism
Deamination
Deoxyribonucleic acid
Directed evolution
DNA
DNA - genetics
Editing
Evolution
Fetuses
Gene Editing - methods
HEK293 Cells
Hemoglobin
Humans
Levels
Life Sciences
Loci
Lymphocytes
Lymphocytes T
mRNA
Mutation
Mutation - genetics
Physiological aspects
Ribonucleic acid
RNA
RNA, Guide, CRISPR-Cas Systems
title Directed evolution of adenine base editors with increased activity and therapeutic application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directed%20evolution%20of%20adenine%20base%20editors%20with%20increased%20activity%20and%20therapeutic%20application&rft.jtitle=Nature%20biotechnology&rft.au=Gaudelli,%20Nicole%20M.&rft.date=2020-07-01&rft.volume=38&rft.issue=7&rft.spage=892&rft.epage=900&rft.pages=892-900&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-020-0491-6&rft_dat=%3Cgale_proqu%3EA629082978%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421254124&rft_id=info:pmid/32284586&rft_galeid=A629082978&rfr_iscdi=true