Directed evolution of adenine base editors with increased activity and therapeutic application
The foundational adenine base editors (for example, ABE7.10) enable programmable A•T to G•C point mutations but editing efficiencies can be low at challenging loci in primary human cells. Here we further evolve ABE7.10 using a library of adenosine deaminase variants to create ABE8s. At NGG protospac...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2020-07, Vol.38 (7), p.892-900 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 900 |
---|---|
container_issue | 7 |
container_start_page | 892 |
container_title | Nature biotechnology |
container_volume | 38 |
creator | Gaudelli, Nicole M. Lam, Dieter K. Rees, Holly A. Solá-Esteves, Noris M. Barrera, Luis A. Born, David A. Edwards, Aaron Gehrke, Jason M. Lee, Seung-Joo Liquori, Alexander J. Murray, Ryan Packer, Michael S. Rinaldi, Conrad Slaymaker, Ian M. Yen, Jonathan Young, Lauren E. Ciaramella, Giuseppe |
description | The foundational adenine base editors (for example, ABE7.10) enable programmable A•T to G•C point mutations but editing efficiencies can be low at challenging loci in primary human cells. Here we further evolve ABE7.10 using a library of adenosine deaminase variants to create ABE8s. At NGG protospacer adjacent motif (PAM) sites, ABE8s result in ~1.5× higher editing at protospacer positions A5–A7 and ~3.2× higher editing at positions A3–A4 and A8–A10 compared with ABE7.10. Non-NGG PAM variants have a ~4.2-fold overall higher on-target editing efficiency than ABE7.10. In human CD34
+
cells, ABE8 can recreate a natural allele at the promoter of the γ-globin genes
HBG1
and
HBG2
with up to 60% efficiency, causing persistence of fetal hemoglobin. In primary human T cells, ABE8s achieve 98–99% target modification, which is maintained when multiplexed across three loci. Delivered as messenger RNA, ABE8s induce no significant levels of single guide RNA (sgRNA)-independent off-target adenine deamination in genomic DNA and very low levels of adenine deamination in cellular mRNA.
Adenine base editors are evolved to be more efficient and more compatible with Cas9 variants. |
doi_str_mv | 10.1038/s41587-020-0491-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2389693294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A629082978</galeid><sourcerecordid>A629082978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c615t-8c4119bd58ef4834926a0c069b9ab1393d1350cfe15d573812b1c0cab302daba3</originalsourceid><addsrcrecordid>eNqNkltrFTEUhQdRbK3-AF8k4IsFp-Y-yWOpVQuFgrdHQybZc07KnJnTJFPtvzfDVO0RFQkkYedbK2FnVdVTgo8IZupV4kSopsYU15hrUst71T4RXNZEanm_7PF8SoTcqx6ldIkxllzKh9Ueo1RxoeR-9eV1iOAyeATXYz_lMA5o7JD1MIQBUGsTIPAhjzGhryGvURhchFL1yLocrkO-QXbwKK8h2i0UA4fsdtsHZ2evx9WDzvYJntyuB9WnN6cfT97V5xdvz06Oz2snici1cpwQ3XqhoOOKcU2lxQ5L3WrbEqaZJ0xg1wERXjRMEdoSh51tGabetpYdVC8W320cryZI2WxCctD3doBxSoYypaVmVPOCPv8NvRynOJTXGcob2TCtSfNvihIqOKF3vFa2BxOGbszRuvlqcyypxorqRhXq6A9UGR42wY0DdKHUdwSHO4LCZPiWV3ZKyZx9eP__7MXnXfblHbadUvniVKYUVuucFskOThbcxTGlCJ3ZxrCx8cYQbOYAmiWApgTQzAE0smie3fZtajfgfyp-JK4AdAFSORpWEH819u-u3wG31OGZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421254124</pqid></control><display><type>article</type><title>Directed evolution of adenine base editors with increased activity and therapeutic application</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Gaudelli, Nicole M. ; Lam, Dieter K. ; Rees, Holly A. ; Solá-Esteves, Noris M. ; Barrera, Luis A. ; Born, David A. ; Edwards, Aaron ; Gehrke, Jason M. ; Lee, Seung-Joo ; Liquori, Alexander J. ; Murray, Ryan ; Packer, Michael S. ; Rinaldi, Conrad ; Slaymaker, Ian M. ; Yen, Jonathan ; Young, Lauren E. ; Ciaramella, Giuseppe</creator><creatorcontrib>Gaudelli, Nicole M. ; Lam, Dieter K. ; Rees, Holly A. ; Solá-Esteves, Noris M. ; Barrera, Luis A. ; Born, David A. ; Edwards, Aaron ; Gehrke, Jason M. ; Lee, Seung-Joo ; Liquori, Alexander J. ; Murray, Ryan ; Packer, Michael S. ; Rinaldi, Conrad ; Slaymaker, Ian M. ; Yen, Jonathan ; Young, Lauren E. ; Ciaramella, Giuseppe</creatorcontrib><description>The foundational adenine base editors (for example, ABE7.10) enable programmable A•T to G•C point mutations but editing efficiencies can be low at challenging loci in primary human cells. Here we further evolve ABE7.10 using a library of adenosine deaminase variants to create ABE8s. At NGG protospacer adjacent motif (PAM) sites, ABE8s result in ~1.5× higher editing at protospacer positions A5–A7 and ~3.2× higher editing at positions A3–A4 and A8–A10 compared with ABE7.10. Non-NGG PAM variants have a ~4.2-fold overall higher on-target editing efficiency than ABE7.10. In human CD34
+
cells, ABE8 can recreate a natural allele at the promoter of the γ-globin genes
HBG1
and
HBG2
with up to 60% efficiency, causing persistence of fetal hemoglobin. In primary human T cells, ABE8s achieve 98–99% target modification, which is maintained when multiplexed across three loci. Delivered as messenger RNA, ABE8s induce no significant levels of single guide RNA (sgRNA)-independent off-target adenine deamination in genomic DNA and very low levels of adenine deamination in cellular mRNA.
Adenine base editors are evolved to be more efficient and more compatible with Cas9 variants.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-020-0491-6</identifier><identifier>PMID: 32284586</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/61/338/469 ; 631/61/51/2314 ; Adenine ; Adenine - metabolism ; Adenosine ; Adenosine Deaminase ; Agriculture ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; CD34 antigen ; CRISPR-Cas Systems - genetics ; Cytosine - metabolism ; Deamination ; Deoxyribonucleic acid ; Directed evolution ; DNA ; DNA - genetics ; Editing ; Evolution ; Fetuses ; Gene Editing - methods ; HEK293 Cells ; Hemoglobin ; Humans ; Levels ; Life Sciences ; Loci ; Lymphocytes ; Lymphocytes T ; mRNA ; Mutation ; Mutation - genetics ; Physiological aspects ; Ribonucleic acid ; RNA ; RNA, Guide, CRISPR-Cas Systems</subject><ispartof>Nature biotechnology, 2020-07, Vol.38 (7), p.892-900</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c615t-8c4119bd58ef4834926a0c069b9ab1393d1350cfe15d573812b1c0cab302daba3</citedby><cites>FETCH-LOGICAL-c615t-8c4119bd58ef4834926a0c069b9ab1393d1350cfe15d573812b1c0cab302daba3</cites><orcidid>0000-0001-8608-4855 ; 0000-0003-0612-6416 ; 0000-0003-3339-7211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32284586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaudelli, Nicole M.</creatorcontrib><creatorcontrib>Lam, Dieter K.</creatorcontrib><creatorcontrib>Rees, Holly A.</creatorcontrib><creatorcontrib>Solá-Esteves, Noris M.</creatorcontrib><creatorcontrib>Barrera, Luis A.</creatorcontrib><creatorcontrib>Born, David A.</creatorcontrib><creatorcontrib>Edwards, Aaron</creatorcontrib><creatorcontrib>Gehrke, Jason M.</creatorcontrib><creatorcontrib>Lee, Seung-Joo</creatorcontrib><creatorcontrib>Liquori, Alexander J.</creatorcontrib><creatorcontrib>Murray, Ryan</creatorcontrib><creatorcontrib>Packer, Michael S.</creatorcontrib><creatorcontrib>Rinaldi, Conrad</creatorcontrib><creatorcontrib>Slaymaker, Ian M.</creatorcontrib><creatorcontrib>Yen, Jonathan</creatorcontrib><creatorcontrib>Young, Lauren E.</creatorcontrib><creatorcontrib>Ciaramella, Giuseppe</creatorcontrib><title>Directed evolution of adenine base editors with increased activity and therapeutic application</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>The foundational adenine base editors (for example, ABE7.10) enable programmable A•T to G•C point mutations but editing efficiencies can be low at challenging loci in primary human cells. Here we further evolve ABE7.10 using a library of adenosine deaminase variants to create ABE8s. At NGG protospacer adjacent motif (PAM) sites, ABE8s result in ~1.5× higher editing at protospacer positions A5–A7 and ~3.2× higher editing at positions A3–A4 and A8–A10 compared with ABE7.10. Non-NGG PAM variants have a ~4.2-fold overall higher on-target editing efficiency than ABE7.10. In human CD34
+
cells, ABE8 can recreate a natural allele at the promoter of the γ-globin genes
HBG1
and
HBG2
with up to 60% efficiency, causing persistence of fetal hemoglobin. In primary human T cells, ABE8s achieve 98–99% target modification, which is maintained when multiplexed across three loci. Delivered as messenger RNA, ABE8s induce no significant levels of single guide RNA (sgRNA)-independent off-target adenine deamination in genomic DNA and very low levels of adenine deamination in cellular mRNA.
Adenine base editors are evolved to be more efficient and more compatible with Cas9 variants.</description><subject>631/61/338/469</subject><subject>631/61/51/2314</subject><subject>Adenine</subject><subject>Adenine - metabolism</subject><subject>Adenosine</subject><subject>Adenosine Deaminase</subject><subject>Agriculture</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>CD34 antigen</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Cytosine - metabolism</subject><subject>Deamination</subject><subject>Deoxyribonucleic acid</subject><subject>Directed evolution</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>Editing</subject><subject>Evolution</subject><subject>Fetuses</subject><subject>Gene Editing - methods</subject><subject>HEK293 Cells</subject><subject>Hemoglobin</subject><subject>Humans</subject><subject>Levels</subject><subject>Life Sciences</subject><subject>Loci</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>mRNA</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Physiological aspects</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Guide, CRISPR-Cas Systems</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkltrFTEUhQdRbK3-AF8k4IsFp-Y-yWOpVQuFgrdHQybZc07KnJnTJFPtvzfDVO0RFQkkYedbK2FnVdVTgo8IZupV4kSopsYU15hrUst71T4RXNZEanm_7PF8SoTcqx6ldIkxllzKh9Ueo1RxoeR-9eV1iOAyeATXYz_lMA5o7JD1MIQBUGsTIPAhjzGhryGvURhchFL1yLocrkO-QXbwKK8h2i0UA4fsdtsHZ2evx9WDzvYJntyuB9WnN6cfT97V5xdvz06Oz2snici1cpwQ3XqhoOOKcU2lxQ5L3WrbEqaZJ0xg1wERXjRMEdoSh51tGabetpYdVC8W320cryZI2WxCctD3doBxSoYypaVmVPOCPv8NvRynOJTXGcob2TCtSfNvihIqOKF3vFa2BxOGbszRuvlqcyypxorqRhXq6A9UGR42wY0DdKHUdwSHO4LCZPiWV3ZKyZx9eP__7MXnXfblHbadUvniVKYUVuucFskOThbcxTGlCJ3ZxrCx8cYQbOYAmiWApgTQzAE0smie3fZtajfgfyp-JK4AdAFSORpWEH819u-u3wG31OGZ</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Gaudelli, Nicole M.</creator><creator>Lam, Dieter K.</creator><creator>Rees, Holly A.</creator><creator>Solá-Esteves, Noris M.</creator><creator>Barrera, Luis A.</creator><creator>Born, David A.</creator><creator>Edwards, Aaron</creator><creator>Gehrke, Jason M.</creator><creator>Lee, Seung-Joo</creator><creator>Liquori, Alexander J.</creator><creator>Murray, Ryan</creator><creator>Packer, Michael S.</creator><creator>Rinaldi, Conrad</creator><creator>Slaymaker, Ian M.</creator><creator>Yen, Jonathan</creator><creator>Young, Lauren E.</creator><creator>Ciaramella, Giuseppe</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8608-4855</orcidid><orcidid>https://orcid.org/0000-0003-0612-6416</orcidid><orcidid>https://orcid.org/0000-0003-3339-7211</orcidid></search><sort><creationdate>20200701</creationdate><title>Directed evolution of adenine base editors with increased activity and therapeutic application</title><author>Gaudelli, Nicole M. ; Lam, Dieter K. ; Rees, Holly A. ; Solá-Esteves, Noris M. ; Barrera, Luis A. ; Born, David A. ; Edwards, Aaron ; Gehrke, Jason M. ; Lee, Seung-Joo ; Liquori, Alexander J. ; Murray, Ryan ; Packer, Michael S. ; Rinaldi, Conrad ; Slaymaker, Ian M. ; Yen, Jonathan ; Young, Lauren E. ; Ciaramella, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c615t-8c4119bd58ef4834926a0c069b9ab1393d1350cfe15d573812b1c0cab302daba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/61/338/469</topic><topic>631/61/51/2314</topic><topic>Adenine</topic><topic>Adenine - metabolism</topic><topic>Adenosine</topic><topic>Adenosine Deaminase</topic><topic>Agriculture</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>CD34 antigen</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Cytosine - metabolism</topic><topic>Deamination</topic><topic>Deoxyribonucleic acid</topic><topic>Directed evolution</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>Editing</topic><topic>Evolution</topic><topic>Fetuses</topic><topic>Gene Editing - methods</topic><topic>HEK293 Cells</topic><topic>Hemoglobin</topic><topic>Humans</topic><topic>Levels</topic><topic>Life Sciences</topic><topic>Loci</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>mRNA</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Physiological aspects</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Guide, CRISPR-Cas Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaudelli, Nicole M.</creatorcontrib><creatorcontrib>Lam, Dieter K.</creatorcontrib><creatorcontrib>Rees, Holly A.</creatorcontrib><creatorcontrib>Solá-Esteves, Noris M.</creatorcontrib><creatorcontrib>Barrera, Luis A.</creatorcontrib><creatorcontrib>Born, David A.</creatorcontrib><creatorcontrib>Edwards, Aaron</creatorcontrib><creatorcontrib>Gehrke, Jason M.</creatorcontrib><creatorcontrib>Lee, Seung-Joo</creatorcontrib><creatorcontrib>Liquori, Alexander J.</creatorcontrib><creatorcontrib>Murray, Ryan</creatorcontrib><creatorcontrib>Packer, Michael S.</creatorcontrib><creatorcontrib>Rinaldi, Conrad</creatorcontrib><creatorcontrib>Slaymaker, Ian M.</creatorcontrib><creatorcontrib>Yen, Jonathan</creatorcontrib><creatorcontrib>Young, Lauren E.</creatorcontrib><creatorcontrib>Ciaramella, Giuseppe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaudelli, Nicole M.</au><au>Lam, Dieter K.</au><au>Rees, Holly A.</au><au>Solá-Esteves, Noris M.</au><au>Barrera, Luis A.</au><au>Born, David A.</au><au>Edwards, Aaron</au><au>Gehrke, Jason M.</au><au>Lee, Seung-Joo</au><au>Liquori, Alexander J.</au><au>Murray, Ryan</au><au>Packer, Michael S.</au><au>Rinaldi, Conrad</au><au>Slaymaker, Ian M.</au><au>Yen, Jonathan</au><au>Young, Lauren E.</au><au>Ciaramella, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directed evolution of adenine base editors with increased activity and therapeutic application</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>38</volume><issue>7</issue><spage>892</spage><epage>900</epage><pages>892-900</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>The foundational adenine base editors (for example, ABE7.10) enable programmable A•T to G•C point mutations but editing efficiencies can be low at challenging loci in primary human cells. Here we further evolve ABE7.10 using a library of adenosine deaminase variants to create ABE8s. At NGG protospacer adjacent motif (PAM) sites, ABE8s result in ~1.5× higher editing at protospacer positions A5–A7 and ~3.2× higher editing at positions A3–A4 and A8–A10 compared with ABE7.10. Non-NGG PAM variants have a ~4.2-fold overall higher on-target editing efficiency than ABE7.10. In human CD34
+
cells, ABE8 can recreate a natural allele at the promoter of the γ-globin genes
HBG1
and
HBG2
with up to 60% efficiency, causing persistence of fetal hemoglobin. In primary human T cells, ABE8s achieve 98–99% target modification, which is maintained when multiplexed across three loci. Delivered as messenger RNA, ABE8s induce no significant levels of single guide RNA (sgRNA)-independent off-target adenine deamination in genomic DNA and very low levels of adenine deamination in cellular mRNA.
Adenine base editors are evolved to be more efficient and more compatible with Cas9 variants.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32284586</pmid><doi>10.1038/s41587-020-0491-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8608-4855</orcidid><orcidid>https://orcid.org/0000-0003-0612-6416</orcidid><orcidid>https://orcid.org/0000-0003-3339-7211</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2020-07, Vol.38 (7), p.892-900 |
issn | 1087-0156 1546-1696 |
language | eng |
recordid | cdi_proquest_miscellaneous_2389693294 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 631/61/338/469 631/61/51/2314 Adenine Adenine - metabolism Adenosine Adenosine Deaminase Agriculture Bioinformatics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology CD34 antigen CRISPR-Cas Systems - genetics Cytosine - metabolism Deamination Deoxyribonucleic acid Directed evolution DNA DNA - genetics Editing Evolution Fetuses Gene Editing - methods HEK293 Cells Hemoglobin Humans Levels Life Sciences Loci Lymphocytes Lymphocytes T mRNA Mutation Mutation - genetics Physiological aspects Ribonucleic acid RNA RNA, Guide, CRISPR-Cas Systems |
title | Directed evolution of adenine base editors with increased activity and therapeutic application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directed%20evolution%20of%20adenine%20base%20editors%20with%20increased%20activity%20and%20therapeutic%20application&rft.jtitle=Nature%20biotechnology&rft.au=Gaudelli,%20Nicole%20M.&rft.date=2020-07-01&rft.volume=38&rft.issue=7&rft.spage=892&rft.epage=900&rft.pages=892-900&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-020-0491-6&rft_dat=%3Cgale_proqu%3EA629082978%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421254124&rft_id=info:pmid/32284586&rft_galeid=A629082978&rfr_iscdi=true |