Transcribed microsatellite allele lengths are often correlated with gene expression in natural sunflower populations
Microsatellites are common in genomes of most eukaryotic species. Due to their high mutability, an adaptive role for microsatellites has been considered. However, little is known concerning the contribution of microsatellites towards phenotypic variation. We used populations of the common sunflower...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2020-05, Vol.29 (9), p.1704-1716 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1716 |
---|---|
container_issue | 9 |
container_start_page | 1704 |
container_title | Molecular ecology |
container_volume | 29 |
creator | Ranathunge, Chathurani Wheeler, Gregory L. Chimahusky, Melody E. Perkins, Andy D. Pramod, Sreepriya Welch, Mark E. |
description | Microsatellites are common in genomes of most eukaryotic species. Due to their high mutability, an adaptive role for microsatellites has been considered. However, little is known concerning the contribution of microsatellites towards phenotypic variation. We used populations of the common sunflower (Helianthus annuus) at two latitudes to quantify the effect of microsatellite allele length on phenotype at the level of gene expression. We conducted a common garden experiment with seed collected from sunflower populations in Kansas and Oklahoma followed by an RNA‐Seq experiment on 95 individuals. The effect of microsatellite allele length on gene expression was assessed across 3,325 microsatellites that could be consistently scored. Our study revealed 479 microsatellites at which allele length significantly correlates with gene expression (eSTRs). When irregular allele sizes not conforming to the motif length were removed, the number of eSTRs rose to 2,379. The percentage of variation in gene expression explained by eSTRs ranged from 1%–86% when controlling for population and allele‐by‐population interaction effects at the 479 eSTRs. Of these eSTRs, 70.4% are in untranslated regions (UTRs). A gene ontology (GO) analysis revealed that eSTRs are significantly enriched for GO terms associated with cis‐ and trans‐regulatory processes. Our findings suggest that a substantial number of transcribed microsatellites can influence gene expression. |
doi_str_mv | 10.1111/mec.15440 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2389692524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389692524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3880-3c8ee2a611672def91b49c162287c502845e8e4e7ddf49eca3747f851821a0e83</originalsourceid><addsrcrecordid>eNp1kT1PHDEQhi2UKBwkRf5AZCkNFAv-3LXL6MSXRJSGSOksn3cWjLz2xt7Vwb-PLwcUkTLNFPPMq5n3RegzJWe01vkI7oxKIcgBWlHeyoZp8esdWhHdsoYSxQ_RUSmPhFDOpPyADjljSkopVmi-yzYWl_0Gejx6l1OxM4TgZ8A2BAiAA8T7-aFgmwGnYYaIXcoZQuV6vPXzA76HCBiepgyl-BSxjzjaeck24LLEIaQtZDylaak7dV4-oveDDQU-vfRj9PPy4m593dz-uLpZf7ttHFeKNNwpAGZbStuO9TBouhHa0bYe3zlJmBISFAjo-n4QGpzlnegGJali1BJQ_Bid7HWnnH4vUGYz-uLqdzZCWophXOlWM8lERb_-gz6mJcd6nWGC6Gqk7nbU6Z7a-VQyDGbKfrT52VBidlGYGoX5G0Vlv7woLpsR-jfy1fsKnO-BrQ_w_H8l8_1ivZf8AwtrlFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409962974</pqid></control><display><type>article</type><title>Transcribed microsatellite allele lengths are often correlated with gene expression in natural sunflower populations</title><source>Wiley-Blackwell Journals</source><creator>Ranathunge, Chathurani ; Wheeler, Gregory L. ; Chimahusky, Melody E. ; Perkins, Andy D. ; Pramod, Sreepriya ; Welch, Mark E.</creator><creatorcontrib>Ranathunge, Chathurani ; Wheeler, Gregory L. ; Chimahusky, Melody E. ; Perkins, Andy D. ; Pramod, Sreepriya ; Welch, Mark E.</creatorcontrib><description>Microsatellites are common in genomes of most eukaryotic species. Due to their high mutability, an adaptive role for microsatellites has been considered. However, little is known concerning the contribution of microsatellites towards phenotypic variation. We used populations of the common sunflower (Helianthus annuus) at two latitudes to quantify the effect of microsatellite allele length on phenotype at the level of gene expression. We conducted a common garden experiment with seed collected from sunflower populations in Kansas and Oklahoma followed by an RNA‐Seq experiment on 95 individuals. The effect of microsatellite allele length on gene expression was assessed across 3,325 microsatellites that could be consistently scored. Our study revealed 479 microsatellites at which allele length significantly correlates with gene expression (eSTRs). When irregular allele sizes not conforming to the motif length were removed, the number of eSTRs rose to 2,379. The percentage of variation in gene expression explained by eSTRs ranged from 1%–86% when controlling for population and allele‐by‐population interaction effects at the 479 eSTRs. Of these eSTRs, 70.4% are in untranslated regions (UTRs). A gene ontology (GO) analysis revealed that eSTRs are significantly enriched for GO terms associated with cis‐ and trans‐regulatory processes. Our findings suggest that a substantial number of transcribed microsatellites can influence gene expression.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.15440</identifier><identifier>PMID: 32285554</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Alleles ; Gene expression ; Genomes ; Helianthus ; Helianthus annuus ; microsatellite ; Microsatellites ; Phenotypes ; Phenotypic variations ; Population genetics ; Populations ; Ribonucleic acid ; RNA ; sunflower ; Sunflowers</subject><ispartof>Molecular ecology, 2020-05, Vol.29 (9), p.1704-1716</ispartof><rights>2020 John Wiley & Sons Ltd</rights><rights>2020 John Wiley & Sons Ltd.</rights><rights>Copyright © 2020 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3880-3c8ee2a611672def91b49c162287c502845e8e4e7ddf49eca3747f851821a0e83</citedby><cites>FETCH-LOGICAL-c3880-3c8ee2a611672def91b49c162287c502845e8e4e7ddf49eca3747f851821a0e83</cites><orcidid>0000-0003-1901-2119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.15440$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.15440$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32285554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ranathunge, Chathurani</creatorcontrib><creatorcontrib>Wheeler, Gregory L.</creatorcontrib><creatorcontrib>Chimahusky, Melody E.</creatorcontrib><creatorcontrib>Perkins, Andy D.</creatorcontrib><creatorcontrib>Pramod, Sreepriya</creatorcontrib><creatorcontrib>Welch, Mark E.</creatorcontrib><title>Transcribed microsatellite allele lengths are often correlated with gene expression in natural sunflower populations</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Microsatellites are common in genomes of most eukaryotic species. Due to their high mutability, an adaptive role for microsatellites has been considered. However, little is known concerning the contribution of microsatellites towards phenotypic variation. We used populations of the common sunflower (Helianthus annuus) at two latitudes to quantify the effect of microsatellite allele length on phenotype at the level of gene expression. We conducted a common garden experiment with seed collected from sunflower populations in Kansas and Oklahoma followed by an RNA‐Seq experiment on 95 individuals. The effect of microsatellite allele length on gene expression was assessed across 3,325 microsatellites that could be consistently scored. Our study revealed 479 microsatellites at which allele length significantly correlates with gene expression (eSTRs). When irregular allele sizes not conforming to the motif length were removed, the number of eSTRs rose to 2,379. The percentage of variation in gene expression explained by eSTRs ranged from 1%–86% when controlling for population and allele‐by‐population interaction effects at the 479 eSTRs. Of these eSTRs, 70.4% are in untranslated regions (UTRs). A gene ontology (GO) analysis revealed that eSTRs are significantly enriched for GO terms associated with cis‐ and trans‐regulatory processes. Our findings suggest that a substantial number of transcribed microsatellites can influence gene expression.</description><subject>Alleles</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Helianthus</subject><subject>Helianthus annuus</subject><subject>microsatellite</subject><subject>Microsatellites</subject><subject>Phenotypes</subject><subject>Phenotypic variations</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>sunflower</subject><subject>Sunflowers</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kT1PHDEQhi2UKBwkRf5AZCkNFAv-3LXL6MSXRJSGSOksn3cWjLz2xt7Vwb-PLwcUkTLNFPPMq5n3RegzJWe01vkI7oxKIcgBWlHeyoZp8esdWhHdsoYSxQ_RUSmPhFDOpPyADjljSkopVmi-yzYWl_0Gejx6l1OxM4TgZ8A2BAiAA8T7-aFgmwGnYYaIXcoZQuV6vPXzA76HCBiepgyl-BSxjzjaeck24LLEIaQtZDylaak7dV4-oveDDQU-vfRj9PPy4m593dz-uLpZf7ttHFeKNNwpAGZbStuO9TBouhHa0bYe3zlJmBISFAjo-n4QGpzlnegGJali1BJQ_Bid7HWnnH4vUGYz-uLqdzZCWophXOlWM8lERb_-gz6mJcd6nWGC6Gqk7nbU6Z7a-VQyDGbKfrT52VBidlGYGoX5G0Vlv7woLpsR-jfy1fsKnO-BrQ_w_H8l8_1ivZf8AwtrlFM</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Ranathunge, Chathurani</creator><creator>Wheeler, Gregory L.</creator><creator>Chimahusky, Melody E.</creator><creator>Perkins, Andy D.</creator><creator>Pramod, Sreepriya</creator><creator>Welch, Mark E.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1901-2119</orcidid></search><sort><creationdate>202005</creationdate><title>Transcribed microsatellite allele lengths are often correlated with gene expression in natural sunflower populations</title><author>Ranathunge, Chathurani ; Wheeler, Gregory L. ; Chimahusky, Melody E. ; Perkins, Andy D. ; Pramod, Sreepriya ; Welch, Mark E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3880-3c8ee2a611672def91b49c162287c502845e8e4e7ddf49eca3747f851821a0e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alleles</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Helianthus</topic><topic>Helianthus annuus</topic><topic>microsatellite</topic><topic>Microsatellites</topic><topic>Phenotypes</topic><topic>Phenotypic variations</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>sunflower</topic><topic>Sunflowers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranathunge, Chathurani</creatorcontrib><creatorcontrib>Wheeler, Gregory L.</creatorcontrib><creatorcontrib>Chimahusky, Melody E.</creatorcontrib><creatorcontrib>Perkins, Andy D.</creatorcontrib><creatorcontrib>Pramod, Sreepriya</creatorcontrib><creatorcontrib>Welch, Mark E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranathunge, Chathurani</au><au>Wheeler, Gregory L.</au><au>Chimahusky, Melody E.</au><au>Perkins, Andy D.</au><au>Pramod, Sreepriya</au><au>Welch, Mark E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcribed microsatellite allele lengths are often correlated with gene expression in natural sunflower populations</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2020-05</date><risdate>2020</risdate><volume>29</volume><issue>9</issue><spage>1704</spage><epage>1716</epage><pages>1704-1716</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Microsatellites are common in genomes of most eukaryotic species. Due to their high mutability, an adaptive role for microsatellites has been considered. However, little is known concerning the contribution of microsatellites towards phenotypic variation. We used populations of the common sunflower (Helianthus annuus) at two latitudes to quantify the effect of microsatellite allele length on phenotype at the level of gene expression. We conducted a common garden experiment with seed collected from sunflower populations in Kansas and Oklahoma followed by an RNA‐Seq experiment on 95 individuals. The effect of microsatellite allele length on gene expression was assessed across 3,325 microsatellites that could be consistently scored. Our study revealed 479 microsatellites at which allele length significantly correlates with gene expression (eSTRs). When irregular allele sizes not conforming to the motif length were removed, the number of eSTRs rose to 2,379. The percentage of variation in gene expression explained by eSTRs ranged from 1%–86% when controlling for population and allele‐by‐population interaction effects at the 479 eSTRs. Of these eSTRs, 70.4% are in untranslated regions (UTRs). A gene ontology (GO) analysis revealed that eSTRs are significantly enriched for GO terms associated with cis‐ and trans‐regulatory processes. Our findings suggest that a substantial number of transcribed microsatellites can influence gene expression.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32285554</pmid><doi>10.1111/mec.15440</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1901-2119</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2020-05, Vol.29 (9), p.1704-1716 |
issn | 0962-1083 1365-294X |
language | eng |
recordid | cdi_proquest_miscellaneous_2389692524 |
source | Wiley-Blackwell Journals |
subjects | Alleles Gene expression Genomes Helianthus Helianthus annuus microsatellite Microsatellites Phenotypes Phenotypic variations Population genetics Populations Ribonucleic acid RNA sunflower Sunflowers |
title | Transcribed microsatellite allele lengths are often correlated with gene expression in natural sunflower populations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcribed%20microsatellite%20allele%20lengths%20are%20often%20correlated%20with%20gene%20expression%20in%20natural%20sunflower%20populations&rft.jtitle=Molecular%20ecology&rft.au=Ranathunge,%20Chathurani&rft.date=2020-05&rft.volume=29&rft.issue=9&rft.spage=1704&rft.epage=1716&rft.pages=1704-1716&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.15440&rft_dat=%3Cproquest_cross%3E2389692524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409962974&rft_id=info:pmid/32285554&rfr_iscdi=true |