Transcribed microsatellite allele lengths are often correlated with gene expression in natural sunflower populations

Microsatellites are common in genomes of most eukaryotic species. Due to their high mutability, an adaptive role for microsatellites has been considered. However, little is known concerning the contribution of microsatellites towards phenotypic variation. We used populations of the common sunflower...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2020-05, Vol.29 (9), p.1704-1716
Hauptverfasser: Ranathunge, Chathurani, Wheeler, Gregory L., Chimahusky, Melody E., Perkins, Andy D., Pramod, Sreepriya, Welch, Mark E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1716
container_issue 9
container_start_page 1704
container_title Molecular ecology
container_volume 29
creator Ranathunge, Chathurani
Wheeler, Gregory L.
Chimahusky, Melody E.
Perkins, Andy D.
Pramod, Sreepriya
Welch, Mark E.
description Microsatellites are common in genomes of most eukaryotic species. Due to their high mutability, an adaptive role for microsatellites has been considered. However, little is known concerning the contribution of microsatellites towards phenotypic variation. We used populations of the common sunflower (Helianthus annuus) at two latitudes to quantify the effect of microsatellite allele length on phenotype at the level of gene expression. We conducted a common garden experiment with seed collected from sunflower populations in Kansas and Oklahoma followed by an RNA‐Seq experiment on 95 individuals. The effect of microsatellite allele length on gene expression was assessed across 3,325 microsatellites that could be consistently scored. Our study revealed 479 microsatellites at which allele length significantly correlates with gene expression (eSTRs). When irregular allele sizes not conforming to the motif length were removed, the number of eSTRs rose to 2,379. The percentage of variation in gene expression explained by eSTRs ranged from 1%–86% when controlling for population and allele‐by‐population interaction effects at the 479 eSTRs. Of these eSTRs, 70.4% are in untranslated regions (UTRs). A gene ontology (GO) analysis revealed that eSTRs are significantly enriched for GO terms associated with cis‐ and trans‐regulatory processes. Our findings suggest that a substantial number of transcribed microsatellites can influence gene expression.
doi_str_mv 10.1111/mec.15440
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2389692524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389692524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3880-3c8ee2a611672def91b49c162287c502845e8e4e7ddf49eca3747f851821a0e83</originalsourceid><addsrcrecordid>eNp1kT1PHDEQhi2UKBwkRf5AZCkNFAv-3LXL6MSXRJSGSOksn3cWjLz2xt7Vwb-PLwcUkTLNFPPMq5n3RegzJWe01vkI7oxKIcgBWlHeyoZp8esdWhHdsoYSxQ_RUSmPhFDOpPyADjljSkopVmi-yzYWl_0Gejx6l1OxM4TgZ8A2BAiAA8T7-aFgmwGnYYaIXcoZQuV6vPXzA76HCBiepgyl-BSxjzjaeck24LLEIaQtZDylaak7dV4-oveDDQU-vfRj9PPy4m593dz-uLpZf7ttHFeKNNwpAGZbStuO9TBouhHa0bYe3zlJmBISFAjo-n4QGpzlnegGJali1BJQ_Bid7HWnnH4vUGYz-uLqdzZCWophXOlWM8lERb_-gz6mJcd6nWGC6Gqk7nbU6Z7a-VQyDGbKfrT52VBidlGYGoX5G0Vlv7woLpsR-jfy1fsKnO-BrQ_w_H8l8_1ivZf8AwtrlFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409962974</pqid></control><display><type>article</type><title>Transcribed microsatellite allele lengths are often correlated with gene expression in natural sunflower populations</title><source>Wiley-Blackwell Journals</source><creator>Ranathunge, Chathurani ; Wheeler, Gregory L. ; Chimahusky, Melody E. ; Perkins, Andy D. ; Pramod, Sreepriya ; Welch, Mark E.</creator><creatorcontrib>Ranathunge, Chathurani ; Wheeler, Gregory L. ; Chimahusky, Melody E. ; Perkins, Andy D. ; Pramod, Sreepriya ; Welch, Mark E.</creatorcontrib><description>Microsatellites are common in genomes of most eukaryotic species. Due to their high mutability, an adaptive role for microsatellites has been considered. However, little is known concerning the contribution of microsatellites towards phenotypic variation. We used populations of the common sunflower (Helianthus annuus) at two latitudes to quantify the effect of microsatellite allele length on phenotype at the level of gene expression. We conducted a common garden experiment with seed collected from sunflower populations in Kansas and Oklahoma followed by an RNA‐Seq experiment on 95 individuals. The effect of microsatellite allele length on gene expression was assessed across 3,325 microsatellites that could be consistently scored. Our study revealed 479 microsatellites at which allele length significantly correlates with gene expression (eSTRs). When irregular allele sizes not conforming to the motif length were removed, the number of eSTRs rose to 2,379. The percentage of variation in gene expression explained by eSTRs ranged from 1%–86% when controlling for population and allele‐by‐population interaction effects at the 479 eSTRs. Of these eSTRs, 70.4% are in untranslated regions (UTRs). A gene ontology (GO) analysis revealed that eSTRs are significantly enriched for GO terms associated with cis‐ and trans‐regulatory processes. Our findings suggest that a substantial number of transcribed microsatellites can influence gene expression.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.15440</identifier><identifier>PMID: 32285554</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Alleles ; Gene expression ; Genomes ; Helianthus ; Helianthus annuus ; microsatellite ; Microsatellites ; Phenotypes ; Phenotypic variations ; Population genetics ; Populations ; Ribonucleic acid ; RNA ; sunflower ; Sunflowers</subject><ispartof>Molecular ecology, 2020-05, Vol.29 (9), p.1704-1716</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3880-3c8ee2a611672def91b49c162287c502845e8e4e7ddf49eca3747f851821a0e83</citedby><cites>FETCH-LOGICAL-c3880-3c8ee2a611672def91b49c162287c502845e8e4e7ddf49eca3747f851821a0e83</cites><orcidid>0000-0003-1901-2119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.15440$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.15440$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32285554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ranathunge, Chathurani</creatorcontrib><creatorcontrib>Wheeler, Gregory L.</creatorcontrib><creatorcontrib>Chimahusky, Melody E.</creatorcontrib><creatorcontrib>Perkins, Andy D.</creatorcontrib><creatorcontrib>Pramod, Sreepriya</creatorcontrib><creatorcontrib>Welch, Mark E.</creatorcontrib><title>Transcribed microsatellite allele lengths are often correlated with gene expression in natural sunflower populations</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Microsatellites are common in genomes of most eukaryotic species. Due to their high mutability, an adaptive role for microsatellites has been considered. However, little is known concerning the contribution of microsatellites towards phenotypic variation. We used populations of the common sunflower (Helianthus annuus) at two latitudes to quantify the effect of microsatellite allele length on phenotype at the level of gene expression. We conducted a common garden experiment with seed collected from sunflower populations in Kansas and Oklahoma followed by an RNA‐Seq experiment on 95 individuals. The effect of microsatellite allele length on gene expression was assessed across 3,325 microsatellites that could be consistently scored. Our study revealed 479 microsatellites at which allele length significantly correlates with gene expression (eSTRs). When irregular allele sizes not conforming to the motif length were removed, the number of eSTRs rose to 2,379. The percentage of variation in gene expression explained by eSTRs ranged from 1%–86% when controlling for population and allele‐by‐population interaction effects at the 479 eSTRs. Of these eSTRs, 70.4% are in untranslated regions (UTRs). A gene ontology (GO) analysis revealed that eSTRs are significantly enriched for GO terms associated with cis‐ and trans‐regulatory processes. Our findings suggest that a substantial number of transcribed microsatellites can influence gene expression.</description><subject>Alleles</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Helianthus</subject><subject>Helianthus annuus</subject><subject>microsatellite</subject><subject>Microsatellites</subject><subject>Phenotypes</subject><subject>Phenotypic variations</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>sunflower</subject><subject>Sunflowers</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kT1PHDEQhi2UKBwkRf5AZCkNFAv-3LXL6MSXRJSGSOksn3cWjLz2xt7Vwb-PLwcUkTLNFPPMq5n3RegzJWe01vkI7oxKIcgBWlHeyoZp8esdWhHdsoYSxQ_RUSmPhFDOpPyADjljSkopVmi-yzYWl_0Gejx6l1OxM4TgZ8A2BAiAA8T7-aFgmwGnYYaIXcoZQuV6vPXzA76HCBiepgyl-BSxjzjaeck24LLEIaQtZDylaak7dV4-oveDDQU-vfRj9PPy4m593dz-uLpZf7ttHFeKNNwpAGZbStuO9TBouhHa0bYe3zlJmBISFAjo-n4QGpzlnegGJali1BJQ_Bid7HWnnH4vUGYz-uLqdzZCWophXOlWM8lERb_-gz6mJcd6nWGC6Gqk7nbU6Z7a-VQyDGbKfrT52VBidlGYGoX5G0Vlv7woLpsR-jfy1fsKnO-BrQ_w_H8l8_1ivZf8AwtrlFM</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Ranathunge, Chathurani</creator><creator>Wheeler, Gregory L.</creator><creator>Chimahusky, Melody E.</creator><creator>Perkins, Andy D.</creator><creator>Pramod, Sreepriya</creator><creator>Welch, Mark E.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1901-2119</orcidid></search><sort><creationdate>202005</creationdate><title>Transcribed microsatellite allele lengths are often correlated with gene expression in natural sunflower populations</title><author>Ranathunge, Chathurani ; Wheeler, Gregory L. ; Chimahusky, Melody E. ; Perkins, Andy D. ; Pramod, Sreepriya ; Welch, Mark E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3880-3c8ee2a611672def91b49c162287c502845e8e4e7ddf49eca3747f851821a0e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alleles</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Helianthus</topic><topic>Helianthus annuus</topic><topic>microsatellite</topic><topic>Microsatellites</topic><topic>Phenotypes</topic><topic>Phenotypic variations</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>sunflower</topic><topic>Sunflowers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranathunge, Chathurani</creatorcontrib><creatorcontrib>Wheeler, Gregory L.</creatorcontrib><creatorcontrib>Chimahusky, Melody E.</creatorcontrib><creatorcontrib>Perkins, Andy D.</creatorcontrib><creatorcontrib>Pramod, Sreepriya</creatorcontrib><creatorcontrib>Welch, Mark E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranathunge, Chathurani</au><au>Wheeler, Gregory L.</au><au>Chimahusky, Melody E.</au><au>Perkins, Andy D.</au><au>Pramod, Sreepriya</au><au>Welch, Mark E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcribed microsatellite allele lengths are often correlated with gene expression in natural sunflower populations</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2020-05</date><risdate>2020</risdate><volume>29</volume><issue>9</issue><spage>1704</spage><epage>1716</epage><pages>1704-1716</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Microsatellites are common in genomes of most eukaryotic species. Due to their high mutability, an adaptive role for microsatellites has been considered. However, little is known concerning the contribution of microsatellites towards phenotypic variation. We used populations of the common sunflower (Helianthus annuus) at two latitudes to quantify the effect of microsatellite allele length on phenotype at the level of gene expression. We conducted a common garden experiment with seed collected from sunflower populations in Kansas and Oklahoma followed by an RNA‐Seq experiment on 95 individuals. The effect of microsatellite allele length on gene expression was assessed across 3,325 microsatellites that could be consistently scored. Our study revealed 479 microsatellites at which allele length significantly correlates with gene expression (eSTRs). When irregular allele sizes not conforming to the motif length were removed, the number of eSTRs rose to 2,379. The percentage of variation in gene expression explained by eSTRs ranged from 1%–86% when controlling for population and allele‐by‐population interaction effects at the 479 eSTRs. Of these eSTRs, 70.4% are in untranslated regions (UTRs). A gene ontology (GO) analysis revealed that eSTRs are significantly enriched for GO terms associated with cis‐ and trans‐regulatory processes. Our findings suggest that a substantial number of transcribed microsatellites can influence gene expression.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32285554</pmid><doi>10.1111/mec.15440</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1901-2119</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2020-05, Vol.29 (9), p.1704-1716
issn 0962-1083
1365-294X
language eng
recordid cdi_proquest_miscellaneous_2389692524
source Wiley-Blackwell Journals
subjects Alleles
Gene expression
Genomes
Helianthus
Helianthus annuus
microsatellite
Microsatellites
Phenotypes
Phenotypic variations
Population genetics
Populations
Ribonucleic acid
RNA
sunflower
Sunflowers
title Transcribed microsatellite allele lengths are often correlated with gene expression in natural sunflower populations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcribed%20microsatellite%20allele%20lengths%20are%20often%20correlated%20with%20gene%20expression%20in%20natural%20sunflower%20populations&rft.jtitle=Molecular%20ecology&rft.au=Ranathunge,%20Chathurani&rft.date=2020-05&rft.volume=29&rft.issue=9&rft.spage=1704&rft.epage=1716&rft.pages=1704-1716&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.15440&rft_dat=%3Cproquest_cross%3E2389692524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409962974&rft_id=info:pmid/32285554&rfr_iscdi=true