Thermoelectric magnetohydrodynamic control of melt pool dynamics and microstructure evolution in additive manufacturing
Large thermal gradients in the melt pool from rapid heating followed by rapid cooling in metal additive manufacturing generate large thermoelectric currents. Applying an external magnetic field to the process introduces fluid flow through thermoelectric magnetohydrodynamics. Convective transport of...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2020-05, Vol.378 (2171), p.20190249-20190249 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20190249 |
---|---|
container_issue | 2171 |
container_start_page | 20190249 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 378 |
creator | Kao, A Gan, T Tonry, C Krastins, I Pericleous, K |
description | Large thermal gradients in the melt pool from rapid heating followed by rapid cooling in metal additive manufacturing generate large thermoelectric currents. Applying an external magnetic field to the process introduces fluid flow through thermoelectric magnetohydrodynamics. Convective transport of heat and mass can then modify the melt pool dynamics and alter microstructural evolution. As a novel technique, this shows great promise in controlling the process to improve quality and mitigate defect formation. However, there is very little knowledge within the scientific community on the fundamental principles of this physical phenomenon to support practical implementation. To address this multi-physics problem that couples the key phenomena of melting/solidification, electromagnetism, hydrodynamics, heat and mass transport, the lattice Boltzmann method for fluid dynamics was combined with a purpose-built code addressing solidification modelling and electromagnetics. The theoretical study presented here investigates the hydrodynamic mechanisms introduced by the magnetic field. The resulting steady-state solutions of modified melt pool shapes and thermal fields are then used to predict the microstructure evolution using a cellular automata-based grain growth model. The results clearly demonstrate that the hydrodynamic mechanisms and, therefore, microstructure characteristics are strongly dependent on magnetic field orientation. This article is part of the theme issue 'Patterns in soft and biological matters'. |
doi_str_mv | 10.1098/rsta.2019.0249 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2389212316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389212316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-a5c3397be4f1bb9ed05195d0ee952d2185203429697cafcbc758bad9cbe3de1c3</originalsourceid><addsrcrecordid>eNo9kLtPwzAQhy0EoqWwMiKPLAl-5OURVbykSixFYosc-9IGJXaxnaL-9zhqYfL57rufdB9Ct5SklIjqwfkgU0aoSAnLxBma06ykCRMFO481L7IkJ_xzhq68_yKE0iJnl2jGGSsjUszRz3oLbrDQgwquU3iQGwPBbg_aWX0wcog9ZU1wtse2xQP0Ae9s_JyGHkujcSyc9cGNKowOMOxtP4bOGtwZLLXuQreHGG3GVk5EZzbX6KKVvYeb07tAH89P6-Vrsnp_eVs-rhKVVVlIZK44F2UDWUubRoAmORW5JgAiZ5rRKmeEZ_FcUSrZqkaVedVILVQDXANVfIHuj7k7Z79H8KEeOq-g76UBO_qa8UowyjgtIpoe0ekW76Ctd64bpDvUlNST7HqSXU-y60l2XLg7ZY_NAPof_7PLfwES5H_T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389212316</pqid></control><display><type>article</type><title>Thermoelectric magnetohydrodynamic control of melt pool dynamics and microstructure evolution in additive manufacturing</title><source>JSTOR Mathematics and Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kao, A ; Gan, T ; Tonry, C ; Krastins, I ; Pericleous, K</creator><creatorcontrib>Kao, A ; Gan, T ; Tonry, C ; Krastins, I ; Pericleous, K</creatorcontrib><description>Large thermal gradients in the melt pool from rapid heating followed by rapid cooling in metal additive manufacturing generate large thermoelectric currents. Applying an external magnetic field to the process introduces fluid flow through thermoelectric magnetohydrodynamics. Convective transport of heat and mass can then modify the melt pool dynamics and alter microstructural evolution. As a novel technique, this shows great promise in controlling the process to improve quality and mitigate defect formation. However, there is very little knowledge within the scientific community on the fundamental principles of this physical phenomenon to support practical implementation. To address this multi-physics problem that couples the key phenomena of melting/solidification, electromagnetism, hydrodynamics, heat and mass transport, the lattice Boltzmann method for fluid dynamics was combined with a purpose-built code addressing solidification modelling and electromagnetics. The theoretical study presented here investigates the hydrodynamic mechanisms introduced by the magnetic field. The resulting steady-state solutions of modified melt pool shapes and thermal fields are then used to predict the microstructure evolution using a cellular automata-based grain growth model. The results clearly demonstrate that the hydrodynamic mechanisms and, therefore, microstructure characteristics are strongly dependent on magnetic field orientation. This article is part of the theme issue 'Patterns in soft and biological matters'.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2019.0249</identifier><identifier>PMID: 32279626</identifier><language>eng</language><publisher>England</publisher><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2020-05, Vol.378 (2171), p.20190249-20190249</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-a5c3397be4f1bb9ed05195d0ee952d2185203429697cafcbc758bad9cbe3de1c3</citedby><cites>FETCH-LOGICAL-c484t-a5c3397be4f1bb9ed05195d0ee952d2185203429697cafcbc758bad9cbe3de1c3</cites><orcidid>0000-0002-6430-2134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32279626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kao, A</creatorcontrib><creatorcontrib>Gan, T</creatorcontrib><creatorcontrib>Tonry, C</creatorcontrib><creatorcontrib>Krastins, I</creatorcontrib><creatorcontrib>Pericleous, K</creatorcontrib><title>Thermoelectric magnetohydrodynamic control of melt pool dynamics and microstructure evolution in additive manufacturing</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>Large thermal gradients in the melt pool from rapid heating followed by rapid cooling in metal additive manufacturing generate large thermoelectric currents. Applying an external magnetic field to the process introduces fluid flow through thermoelectric magnetohydrodynamics. Convective transport of heat and mass can then modify the melt pool dynamics and alter microstructural evolution. As a novel technique, this shows great promise in controlling the process to improve quality and mitigate defect formation. However, there is very little knowledge within the scientific community on the fundamental principles of this physical phenomenon to support practical implementation. To address this multi-physics problem that couples the key phenomena of melting/solidification, electromagnetism, hydrodynamics, heat and mass transport, the lattice Boltzmann method for fluid dynamics was combined with a purpose-built code addressing solidification modelling and electromagnetics. The theoretical study presented here investigates the hydrodynamic mechanisms introduced by the magnetic field. The resulting steady-state solutions of modified melt pool shapes and thermal fields are then used to predict the microstructure evolution using a cellular automata-based grain growth model. The results clearly demonstrate that the hydrodynamic mechanisms and, therefore, microstructure characteristics are strongly dependent on magnetic field orientation. This article is part of the theme issue 'Patterns in soft and biological matters'.</description><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kLtPwzAQhy0EoqWwMiKPLAl-5OURVbykSixFYosc-9IGJXaxnaL-9zhqYfL57rufdB9Ct5SklIjqwfkgU0aoSAnLxBma06ykCRMFO481L7IkJ_xzhq68_yKE0iJnl2jGGSsjUszRz3oLbrDQgwquU3iQGwPBbg_aWX0wcog9ZU1wtse2xQP0Ae9s_JyGHkujcSyc9cGNKowOMOxtP4bOGtwZLLXuQreHGG3GVk5EZzbX6KKVvYeb07tAH89P6-Vrsnp_eVs-rhKVVVlIZK44F2UDWUubRoAmORW5JgAiZ5rRKmeEZ_FcUSrZqkaVedVILVQDXANVfIHuj7k7Z79H8KEeOq-g76UBO_qa8UowyjgtIpoe0ekW76Ctd64bpDvUlNST7HqSXU-y60l2XLg7ZY_NAPof_7PLfwES5H_T</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Kao, A</creator><creator>Gan, T</creator><creator>Tonry, C</creator><creator>Krastins, I</creator><creator>Pericleous, K</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6430-2134</orcidid></search><sort><creationdate>20200515</creationdate><title>Thermoelectric magnetohydrodynamic control of melt pool dynamics and microstructure evolution in additive manufacturing</title><author>Kao, A ; Gan, T ; Tonry, C ; Krastins, I ; Pericleous, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-a5c3397be4f1bb9ed05195d0ee952d2185203429697cafcbc758bad9cbe3de1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kao, A</creatorcontrib><creatorcontrib>Gan, T</creatorcontrib><creatorcontrib>Tonry, C</creatorcontrib><creatorcontrib>Krastins, I</creatorcontrib><creatorcontrib>Pericleous, K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kao, A</au><au>Gan, T</au><au>Tonry, C</au><au>Krastins, I</au><au>Pericleous, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric magnetohydrodynamic control of melt pool dynamics and microstructure evolution in additive manufacturing</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2020-05-15</date><risdate>2020</risdate><volume>378</volume><issue>2171</issue><spage>20190249</spage><epage>20190249</epage><pages>20190249-20190249</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Large thermal gradients in the melt pool from rapid heating followed by rapid cooling in metal additive manufacturing generate large thermoelectric currents. Applying an external magnetic field to the process introduces fluid flow through thermoelectric magnetohydrodynamics. Convective transport of heat and mass can then modify the melt pool dynamics and alter microstructural evolution. As a novel technique, this shows great promise in controlling the process to improve quality and mitigate defect formation. However, there is very little knowledge within the scientific community on the fundamental principles of this physical phenomenon to support practical implementation. To address this multi-physics problem that couples the key phenomena of melting/solidification, electromagnetism, hydrodynamics, heat and mass transport, the lattice Boltzmann method for fluid dynamics was combined with a purpose-built code addressing solidification modelling and electromagnetics. The theoretical study presented here investigates the hydrodynamic mechanisms introduced by the magnetic field. The resulting steady-state solutions of modified melt pool shapes and thermal fields are then used to predict the microstructure evolution using a cellular automata-based grain growth model. The results clearly demonstrate that the hydrodynamic mechanisms and, therefore, microstructure characteristics are strongly dependent on magnetic field orientation. This article is part of the theme issue 'Patterns in soft and biological matters'.</abstract><cop>England</cop><pmid>32279626</pmid><doi>10.1098/rsta.2019.0249</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6430-2134</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2020-05, Vol.378 (2171), p.20190249-20190249 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_proquest_miscellaneous_2389212316 |
source | JSTOR Mathematics and Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
title | Thermoelectric magnetohydrodynamic control of melt pool dynamics and microstructure evolution in additive manufacturing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20magnetohydrodynamic%20control%20of%20melt%20pool%20dynamics%20and%20microstructure%20evolution%20in%20additive%20manufacturing&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Kao,%20A&rft.date=2020-05-15&rft.volume=378&rft.issue=2171&rft.spage=20190249&rft.epage=20190249&rft.pages=20190249-20190249&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2019.0249&rft_dat=%3Cproquest_cross%3E2389212316%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389212316&rft_id=info:pmid/32279626&rfr_iscdi=true |