Thermoelectric magnetohydrodynamic control of melt pool dynamics and microstructure evolution in additive manufacturing

Large thermal gradients in the melt pool from rapid heating followed by rapid cooling in metal additive manufacturing generate large thermoelectric currents. Applying an external magnetic field to the process introduces fluid flow through thermoelectric magnetohydrodynamics. Convective transport of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2020-05, Vol.378 (2171), p.20190249-20190249
Hauptverfasser: Kao, A, Gan, T, Tonry, C, Krastins, I, Pericleous, K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20190249
container_issue 2171
container_start_page 20190249
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 378
creator Kao, A
Gan, T
Tonry, C
Krastins, I
Pericleous, K
description Large thermal gradients in the melt pool from rapid heating followed by rapid cooling in metal additive manufacturing generate large thermoelectric currents. Applying an external magnetic field to the process introduces fluid flow through thermoelectric magnetohydrodynamics. Convective transport of heat and mass can then modify the melt pool dynamics and alter microstructural evolution. As a novel technique, this shows great promise in controlling the process to improve quality and mitigate defect formation. However, there is very little knowledge within the scientific community on the fundamental principles of this physical phenomenon to support practical implementation. To address this multi-physics problem that couples the key phenomena of melting/solidification, electromagnetism, hydrodynamics, heat and mass transport, the lattice Boltzmann method for fluid dynamics was combined with a purpose-built code addressing solidification modelling and electromagnetics. The theoretical study presented here investigates the hydrodynamic mechanisms introduced by the magnetic field. The resulting steady-state solutions of modified melt pool shapes and thermal fields are then used to predict the microstructure evolution using a cellular automata-based grain growth model. The results clearly demonstrate that the hydrodynamic mechanisms and, therefore, microstructure characteristics are strongly dependent on magnetic field orientation. This article is part of the theme issue 'Patterns in soft and biological matters'.
doi_str_mv 10.1098/rsta.2019.0249
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2389212316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389212316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-a5c3397be4f1bb9ed05195d0ee952d2185203429697cafcbc758bad9cbe3de1c3</originalsourceid><addsrcrecordid>eNo9kLtPwzAQhy0EoqWwMiKPLAl-5OURVbykSixFYosc-9IGJXaxnaL-9zhqYfL57rufdB9Ct5SklIjqwfkgU0aoSAnLxBma06ykCRMFO481L7IkJ_xzhq68_yKE0iJnl2jGGSsjUszRz3oLbrDQgwquU3iQGwPBbg_aWX0wcog9ZU1wtse2xQP0Ae9s_JyGHkujcSyc9cGNKowOMOxtP4bOGtwZLLXuQreHGG3GVk5EZzbX6KKVvYeb07tAH89P6-Vrsnp_eVs-rhKVVVlIZK44F2UDWUubRoAmORW5JgAiZ5rRKmeEZ_FcUSrZqkaVedVILVQDXANVfIHuj7k7Z79H8KEeOq-g76UBO_qa8UowyjgtIpoe0ekW76Ctd64bpDvUlNST7HqSXU-y60l2XLg7ZY_NAPof_7PLfwES5H_T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389212316</pqid></control><display><type>article</type><title>Thermoelectric magnetohydrodynamic control of melt pool dynamics and microstructure evolution in additive manufacturing</title><source>JSTOR Mathematics and Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kao, A ; Gan, T ; Tonry, C ; Krastins, I ; Pericleous, K</creator><creatorcontrib>Kao, A ; Gan, T ; Tonry, C ; Krastins, I ; Pericleous, K</creatorcontrib><description>Large thermal gradients in the melt pool from rapid heating followed by rapid cooling in metal additive manufacturing generate large thermoelectric currents. Applying an external magnetic field to the process introduces fluid flow through thermoelectric magnetohydrodynamics. Convective transport of heat and mass can then modify the melt pool dynamics and alter microstructural evolution. As a novel technique, this shows great promise in controlling the process to improve quality and mitigate defect formation. However, there is very little knowledge within the scientific community on the fundamental principles of this physical phenomenon to support practical implementation. To address this multi-physics problem that couples the key phenomena of melting/solidification, electromagnetism, hydrodynamics, heat and mass transport, the lattice Boltzmann method for fluid dynamics was combined with a purpose-built code addressing solidification modelling and electromagnetics. The theoretical study presented here investigates the hydrodynamic mechanisms introduced by the magnetic field. The resulting steady-state solutions of modified melt pool shapes and thermal fields are then used to predict the microstructure evolution using a cellular automata-based grain growth model. The results clearly demonstrate that the hydrodynamic mechanisms and, therefore, microstructure characteristics are strongly dependent on magnetic field orientation. This article is part of the theme issue 'Patterns in soft and biological matters'.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2019.0249</identifier><identifier>PMID: 32279626</identifier><language>eng</language><publisher>England</publisher><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2020-05, Vol.378 (2171), p.20190249-20190249</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-a5c3397be4f1bb9ed05195d0ee952d2185203429697cafcbc758bad9cbe3de1c3</citedby><cites>FETCH-LOGICAL-c484t-a5c3397be4f1bb9ed05195d0ee952d2185203429697cafcbc758bad9cbe3de1c3</cites><orcidid>0000-0002-6430-2134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32279626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kao, A</creatorcontrib><creatorcontrib>Gan, T</creatorcontrib><creatorcontrib>Tonry, C</creatorcontrib><creatorcontrib>Krastins, I</creatorcontrib><creatorcontrib>Pericleous, K</creatorcontrib><title>Thermoelectric magnetohydrodynamic control of melt pool dynamics and microstructure evolution in additive manufacturing</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>Large thermal gradients in the melt pool from rapid heating followed by rapid cooling in metal additive manufacturing generate large thermoelectric currents. Applying an external magnetic field to the process introduces fluid flow through thermoelectric magnetohydrodynamics. Convective transport of heat and mass can then modify the melt pool dynamics and alter microstructural evolution. As a novel technique, this shows great promise in controlling the process to improve quality and mitigate defect formation. However, there is very little knowledge within the scientific community on the fundamental principles of this physical phenomenon to support practical implementation. To address this multi-physics problem that couples the key phenomena of melting/solidification, electromagnetism, hydrodynamics, heat and mass transport, the lattice Boltzmann method for fluid dynamics was combined with a purpose-built code addressing solidification modelling and electromagnetics. The theoretical study presented here investigates the hydrodynamic mechanisms introduced by the magnetic field. The resulting steady-state solutions of modified melt pool shapes and thermal fields are then used to predict the microstructure evolution using a cellular automata-based grain growth model. The results clearly demonstrate that the hydrodynamic mechanisms and, therefore, microstructure characteristics are strongly dependent on magnetic field orientation. This article is part of the theme issue 'Patterns in soft and biological matters'.</description><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kLtPwzAQhy0EoqWwMiKPLAl-5OURVbykSixFYosc-9IGJXaxnaL-9zhqYfL57rufdB9Ct5SklIjqwfkgU0aoSAnLxBma06ykCRMFO481L7IkJ_xzhq68_yKE0iJnl2jGGSsjUszRz3oLbrDQgwquU3iQGwPBbg_aWX0wcog9ZU1wtse2xQP0Ae9s_JyGHkujcSyc9cGNKowOMOxtP4bOGtwZLLXuQreHGG3GVk5EZzbX6KKVvYeb07tAH89P6-Vrsnp_eVs-rhKVVVlIZK44F2UDWUubRoAmORW5JgAiZ5rRKmeEZ_FcUSrZqkaVedVILVQDXANVfIHuj7k7Z79H8KEeOq-g76UBO_qa8UowyjgtIpoe0ekW76Ctd64bpDvUlNST7HqSXU-y60l2XLg7ZY_NAPof_7PLfwES5H_T</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Kao, A</creator><creator>Gan, T</creator><creator>Tonry, C</creator><creator>Krastins, I</creator><creator>Pericleous, K</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6430-2134</orcidid></search><sort><creationdate>20200515</creationdate><title>Thermoelectric magnetohydrodynamic control of melt pool dynamics and microstructure evolution in additive manufacturing</title><author>Kao, A ; Gan, T ; Tonry, C ; Krastins, I ; Pericleous, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-a5c3397be4f1bb9ed05195d0ee952d2185203429697cafcbc758bad9cbe3de1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kao, A</creatorcontrib><creatorcontrib>Gan, T</creatorcontrib><creatorcontrib>Tonry, C</creatorcontrib><creatorcontrib>Krastins, I</creatorcontrib><creatorcontrib>Pericleous, K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kao, A</au><au>Gan, T</au><au>Tonry, C</au><au>Krastins, I</au><au>Pericleous, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric magnetohydrodynamic control of melt pool dynamics and microstructure evolution in additive manufacturing</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2020-05-15</date><risdate>2020</risdate><volume>378</volume><issue>2171</issue><spage>20190249</spage><epage>20190249</epage><pages>20190249-20190249</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Large thermal gradients in the melt pool from rapid heating followed by rapid cooling in metal additive manufacturing generate large thermoelectric currents. Applying an external magnetic field to the process introduces fluid flow through thermoelectric magnetohydrodynamics. Convective transport of heat and mass can then modify the melt pool dynamics and alter microstructural evolution. As a novel technique, this shows great promise in controlling the process to improve quality and mitigate defect formation. However, there is very little knowledge within the scientific community on the fundamental principles of this physical phenomenon to support practical implementation. To address this multi-physics problem that couples the key phenomena of melting/solidification, electromagnetism, hydrodynamics, heat and mass transport, the lattice Boltzmann method for fluid dynamics was combined with a purpose-built code addressing solidification modelling and electromagnetics. The theoretical study presented here investigates the hydrodynamic mechanisms introduced by the magnetic field. The resulting steady-state solutions of modified melt pool shapes and thermal fields are then used to predict the microstructure evolution using a cellular automata-based grain growth model. The results clearly demonstrate that the hydrodynamic mechanisms and, therefore, microstructure characteristics are strongly dependent on magnetic field orientation. This article is part of the theme issue 'Patterns in soft and biological matters'.</abstract><cop>England</cop><pmid>32279626</pmid><doi>10.1098/rsta.2019.0249</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6430-2134</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2020-05, Vol.378 (2171), p.20190249-20190249
issn 1364-503X
1471-2962
language eng
recordid cdi_proquest_miscellaneous_2389212316
source JSTOR Mathematics and Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
title Thermoelectric magnetohydrodynamic control of melt pool dynamics and microstructure evolution in additive manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20magnetohydrodynamic%20control%20of%20melt%20pool%20dynamics%20and%20microstructure%20evolution%20in%20additive%20manufacturing&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Kao,%20A&rft.date=2020-05-15&rft.volume=378&rft.issue=2171&rft.spage=20190249&rft.epage=20190249&rft.pages=20190249-20190249&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2019.0249&rft_dat=%3Cproquest_cross%3E2389212316%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389212316&rft_id=info:pmid/32279626&rfr_iscdi=true