Comparative Solution Synthesis of Mn Doped (Na,K)NbO3 Thin Films

(K0.5Na0.5)NbO3 (KNN) is a promising lead‐free alternative for ferroelectric thin films such as Pb(Zr,Ti)O3. One main drawback is its high leakage current density at high electric fields, which has been previously linked to alkali non‐stoichiometry. This paper compares three acetate‐based chemical s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2020-07, Vol.26 (42), p.9356-9364
Hauptverfasser: Kovacova, Veronika, Yang, Jung In, Jacques, Leonard, Ko, Song Won, Zhu, Wanlin, Trolier‐McKinstry, Susan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9364
container_issue 42
container_start_page 9356
container_title Chemistry : a European journal
container_volume 26
creator Kovacova, Veronika
Yang, Jung In
Jacques, Leonard
Ko, Song Won
Zhu, Wanlin
Trolier‐McKinstry, Susan
description (K0.5Na0.5)NbO3 (KNN) is a promising lead‐free alternative for ferroelectric thin films such as Pb(Zr,Ti)O3. One main drawback is its high leakage current density at high electric fields, which has been previously linked to alkali non‐stoichiometry. This paper compares three acetate‐based chemical solution synthesis and deposition methods for 0.5 mol % Mn‐doped KNN film fabrication, using lower crystallization temperature processes in comparison to the sintering temperatures necessary for fabrication of KNN ceramics. This paper shows the crucial role of the A site homogenization step during solution synthesis in preserving alkali chemical homogeneity of Mn doped KNN films. Chemically homogeneous films show a uniform grain size of 80 nm and a leakage current density under 2.8×10−8 A cm−2 up to electric fields as high as 600 kV cm−1, which is the highest breakdown strength reported for KNN thin films. Solution synthesis involving two‐step pyrolysis resulted in films with dense, columnar microstructures, which are interesting for orientation control and enhancement of piezoelectric properties. This study reports detailed solution synthesis and deposition processes with good dielectric, ferroelectric and breakdown field properties. An optimized fabrication method that should couple low leakage current density with dense and oriented microstructures is proposed. Find the solution: This paper shows the crucial role of the A‐site homogenization step during solution synthesis in preserving alkali chemical homogeneity of Mn‐doped KNN films. Chemically homogeneous films show uniform grain size of 80 nm and leakage current density under 2.8×10−8 A cm−2 up to electric fields as high as 600 k cm−1. Solution synthesis involving two‐step pyrolysis resulted in films with dense, columnar microstructres, which are interesting for orientation control and enhancement of piezoelectric properties.
doi_str_mv 10.1002/chem.202000537
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2388824652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388824652</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2417-e85ea581b41647c5133a6849c5e7aaa6363a21b4853188ee335f60ba08056b4b3</originalsourceid><addsrcrecordid>eNpd0MtPwkAQBvCN0QiiV4-miRdMLO7u7Ks3TQUx8jiA5822LFLTl91Ww39vCcjB02Ty_TKZfAhdEzwgGNOHeGOzAcUUY8xBnqAu4ZT4IAU_RV0cMOkLDkEHXTj32ZpAAJyjDlAqmRKsix7DIitNZerk23qLIm3qpMi9xTavN9YlzivW3jT3novSrrz-zNy_3c2iOXjLTZJ7oyTN3CU6W5vU2avD7KH30XAZjv3J_OU1fJr4H5QR6VvFreGKRIwIJmNOAIxQLIi5lcYYAQIMbVPFgShlLQBfCxwZrDAXEYugh_r7u2VVfDXW1TpLXGzT1OS2aJymoJSiTHDa0tt_9LNoqrz9TlNGJSUgZdCqm4NqosyudFklmam2-q-bFgR78JOkdnvMCda75vWueX1sXofj4fS4wS-P7XLH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427213779</pqid></control><display><type>article</type><title>Comparative Solution Synthesis of Mn Doped (Na,K)NbO3 Thin Films</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kovacova, Veronika ; Yang, Jung In ; Jacques, Leonard ; Ko, Song Won ; Zhu, Wanlin ; Trolier‐McKinstry, Susan</creator><creatorcontrib>Kovacova, Veronika ; Yang, Jung In ; Jacques, Leonard ; Ko, Song Won ; Zhu, Wanlin ; Trolier‐McKinstry, Susan</creatorcontrib><description>(K0.5Na0.5)NbO3 (KNN) is a promising lead‐free alternative for ferroelectric thin films such as Pb(Zr,Ti)O3. One main drawback is its high leakage current density at high electric fields, which has been previously linked to alkali non‐stoichiometry. This paper compares three acetate‐based chemical solution synthesis and deposition methods for 0.5 mol % Mn‐doped KNN film fabrication, using lower crystallization temperature processes in comparison to the sintering temperatures necessary for fabrication of KNN ceramics. This paper shows the crucial role of the A site homogenization step during solution synthesis in preserving alkali chemical homogeneity of Mn doped KNN films. Chemically homogeneous films show a uniform grain size of 80 nm and a leakage current density under 2.8×10−8 A cm−2 up to electric fields as high as 600 kV cm−1, which is the highest breakdown strength reported for KNN thin films. Solution synthesis involving two‐step pyrolysis resulted in films with dense, columnar microstructures, which are interesting for orientation control and enhancement of piezoelectric properties. This study reports detailed solution synthesis and deposition processes with good dielectric, ferroelectric and breakdown field properties. An optimized fabrication method that should couple low leakage current density with dense and oriented microstructures is proposed. Find the solution: This paper shows the crucial role of the A‐site homogenization step during solution synthesis in preserving alkali chemical homogeneity of Mn‐doped KNN films. Chemically homogeneous films show uniform grain size of 80 nm and leakage current density under 2.8×10−8 A cm−2 up to electric fields as high as 600 k cm−1. Solution synthesis involving two‐step pyrolysis resulted in films with dense, columnar microstructres, which are interesting for orientation control and enhancement of piezoelectric properties.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202000537</identifier><identifier>PMID: 32274864</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acetic acid ; alkali chemical homogeneity ; Chemical synthesis ; Chemistry ; Crystallization ; Current density ; Deposition ; Dielectric breakdown ; Dielectric properties ; Electric fields ; Fabrication ; Ferroelectric materials ; Ferroelectricity ; Grain size ; Homogeneity ; Lead zirconate titanates ; lead-free ferroelectric films ; Leakage ; Leakage current ; leakage current density ; Niobates ; Piezoelectricity ; Pyrolysis ; sodium potassium niobate ; sol–gel CSD ; Stoichiometry ; Thin films ; Zirconium</subject><ispartof>Chemistry : a European journal, 2020-07, Vol.26 (42), p.9356-9364</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9281-3732 ; 0000-0002-7267-9281 ; 0000-0002-3238-389X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202000537$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202000537$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32274864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kovacova, Veronika</creatorcontrib><creatorcontrib>Yang, Jung In</creatorcontrib><creatorcontrib>Jacques, Leonard</creatorcontrib><creatorcontrib>Ko, Song Won</creatorcontrib><creatorcontrib>Zhu, Wanlin</creatorcontrib><creatorcontrib>Trolier‐McKinstry, Susan</creatorcontrib><title>Comparative Solution Synthesis of Mn Doped (Na,K)NbO3 Thin Films</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>(K0.5Na0.5)NbO3 (KNN) is a promising lead‐free alternative for ferroelectric thin films such as Pb(Zr,Ti)O3. One main drawback is its high leakage current density at high electric fields, which has been previously linked to alkali non‐stoichiometry. This paper compares three acetate‐based chemical solution synthesis and deposition methods for 0.5 mol % Mn‐doped KNN film fabrication, using lower crystallization temperature processes in comparison to the sintering temperatures necessary for fabrication of KNN ceramics. This paper shows the crucial role of the A site homogenization step during solution synthesis in preserving alkali chemical homogeneity of Mn doped KNN films. Chemically homogeneous films show a uniform grain size of 80 nm and a leakage current density under 2.8×10−8 A cm−2 up to electric fields as high as 600 kV cm−1, which is the highest breakdown strength reported for KNN thin films. Solution synthesis involving two‐step pyrolysis resulted in films with dense, columnar microstructures, which are interesting for orientation control and enhancement of piezoelectric properties. This study reports detailed solution synthesis and deposition processes with good dielectric, ferroelectric and breakdown field properties. An optimized fabrication method that should couple low leakage current density with dense and oriented microstructures is proposed. Find the solution: This paper shows the crucial role of the A‐site homogenization step during solution synthesis in preserving alkali chemical homogeneity of Mn‐doped KNN films. Chemically homogeneous films show uniform grain size of 80 nm and leakage current density under 2.8×10−8 A cm−2 up to electric fields as high as 600 k cm−1. Solution synthesis involving two‐step pyrolysis resulted in films with dense, columnar microstructres, which are interesting for orientation control and enhancement of piezoelectric properties.</description><subject>Acetic acid</subject><subject>alkali chemical homogeneity</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Crystallization</subject><subject>Current density</subject><subject>Deposition</subject><subject>Dielectric breakdown</subject><subject>Dielectric properties</subject><subject>Electric fields</subject><subject>Fabrication</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Grain size</subject><subject>Homogeneity</subject><subject>Lead zirconate titanates</subject><subject>lead-free ferroelectric films</subject><subject>Leakage</subject><subject>Leakage current</subject><subject>leakage current density</subject><subject>Niobates</subject><subject>Piezoelectricity</subject><subject>Pyrolysis</subject><subject>sodium potassium niobate</subject><subject>sol–gel CSD</subject><subject>Stoichiometry</subject><subject>Thin films</subject><subject>Zirconium</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0MtPwkAQBvCN0QiiV4-miRdMLO7u7Ks3TQUx8jiA5822LFLTl91Ww39vCcjB02Ty_TKZfAhdEzwgGNOHeGOzAcUUY8xBnqAu4ZT4IAU_RV0cMOkLDkEHXTj32ZpAAJyjDlAqmRKsix7DIitNZerk23qLIm3qpMi9xTavN9YlzivW3jT3novSrrz-zNy_3c2iOXjLTZJ7oyTN3CU6W5vU2avD7KH30XAZjv3J_OU1fJr4H5QR6VvFreGKRIwIJmNOAIxQLIi5lcYYAQIMbVPFgShlLQBfCxwZrDAXEYugh_r7u2VVfDXW1TpLXGzT1OS2aJymoJSiTHDa0tt_9LNoqrz9TlNGJSUgZdCqm4NqosyudFklmam2-q-bFgR78JOkdnvMCda75vWueX1sXofj4fS4wS-P7XLH</recordid><startdate>20200727</startdate><enddate>20200727</enddate><creator>Kovacova, Veronika</creator><creator>Yang, Jung In</creator><creator>Jacques, Leonard</creator><creator>Ko, Song Won</creator><creator>Zhu, Wanlin</creator><creator>Trolier‐McKinstry, Susan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9281-3732</orcidid><orcidid>https://orcid.org/0000-0002-7267-9281</orcidid><orcidid>https://orcid.org/0000-0002-3238-389X</orcidid></search><sort><creationdate>20200727</creationdate><title>Comparative Solution Synthesis of Mn Doped (Na,K)NbO3 Thin Films</title><author>Kovacova, Veronika ; Yang, Jung In ; Jacques, Leonard ; Ko, Song Won ; Zhu, Wanlin ; Trolier‐McKinstry, Susan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2417-e85ea581b41647c5133a6849c5e7aaa6363a21b4853188ee335f60ba08056b4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetic acid</topic><topic>alkali chemical homogeneity</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Crystallization</topic><topic>Current density</topic><topic>Deposition</topic><topic>Dielectric breakdown</topic><topic>Dielectric properties</topic><topic>Electric fields</topic><topic>Fabrication</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Grain size</topic><topic>Homogeneity</topic><topic>Lead zirconate titanates</topic><topic>lead-free ferroelectric films</topic><topic>Leakage</topic><topic>Leakage current</topic><topic>leakage current density</topic><topic>Niobates</topic><topic>Piezoelectricity</topic><topic>Pyrolysis</topic><topic>sodium potassium niobate</topic><topic>sol–gel CSD</topic><topic>Stoichiometry</topic><topic>Thin films</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kovacova, Veronika</creatorcontrib><creatorcontrib>Yang, Jung In</creatorcontrib><creatorcontrib>Jacques, Leonard</creatorcontrib><creatorcontrib>Ko, Song Won</creatorcontrib><creatorcontrib>Zhu, Wanlin</creatorcontrib><creatorcontrib>Trolier‐McKinstry, Susan</creatorcontrib><collection>PubMed</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovacova, Veronika</au><au>Yang, Jung In</au><au>Jacques, Leonard</au><au>Ko, Song Won</au><au>Zhu, Wanlin</au><au>Trolier‐McKinstry, Susan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Solution Synthesis of Mn Doped (Na,K)NbO3 Thin Films</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2020-07-27</date><risdate>2020</risdate><volume>26</volume><issue>42</issue><spage>9356</spage><epage>9364</epage><pages>9356-9364</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>(K0.5Na0.5)NbO3 (KNN) is a promising lead‐free alternative for ferroelectric thin films such as Pb(Zr,Ti)O3. One main drawback is its high leakage current density at high electric fields, which has been previously linked to alkali non‐stoichiometry. This paper compares three acetate‐based chemical solution synthesis and deposition methods for 0.5 mol % Mn‐doped KNN film fabrication, using lower crystallization temperature processes in comparison to the sintering temperatures necessary for fabrication of KNN ceramics. This paper shows the crucial role of the A site homogenization step during solution synthesis in preserving alkali chemical homogeneity of Mn doped KNN films. Chemically homogeneous films show a uniform grain size of 80 nm and a leakage current density under 2.8×10−8 A cm−2 up to electric fields as high as 600 kV cm−1, which is the highest breakdown strength reported for KNN thin films. Solution synthesis involving two‐step pyrolysis resulted in films with dense, columnar microstructures, which are interesting for orientation control and enhancement of piezoelectric properties. This study reports detailed solution synthesis and deposition processes with good dielectric, ferroelectric and breakdown field properties. An optimized fabrication method that should couple low leakage current density with dense and oriented microstructures is proposed. Find the solution: This paper shows the crucial role of the A‐site homogenization step during solution synthesis in preserving alkali chemical homogeneity of Mn‐doped KNN films. Chemically homogeneous films show uniform grain size of 80 nm and leakage current density under 2.8×10−8 A cm−2 up to electric fields as high as 600 k cm−1. Solution synthesis involving two‐step pyrolysis resulted in films with dense, columnar microstructres, which are interesting for orientation control and enhancement of piezoelectric properties.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32274864</pmid><doi>10.1002/chem.202000537</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9281-3732</orcidid><orcidid>https://orcid.org/0000-0002-7267-9281</orcidid><orcidid>https://orcid.org/0000-0002-3238-389X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2020-07, Vol.26 (42), p.9356-9364
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2388824652
source Wiley Online Library Journals Frontfile Complete
subjects Acetic acid
alkali chemical homogeneity
Chemical synthesis
Chemistry
Crystallization
Current density
Deposition
Dielectric breakdown
Dielectric properties
Electric fields
Fabrication
Ferroelectric materials
Ferroelectricity
Grain size
Homogeneity
Lead zirconate titanates
lead-free ferroelectric films
Leakage
Leakage current
leakage current density
Niobates
Piezoelectricity
Pyrolysis
sodium potassium niobate
sol–gel CSD
Stoichiometry
Thin films
Zirconium
title Comparative Solution Synthesis of Mn Doped (Na,K)NbO3 Thin Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A42%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Solution%20Synthesis%20of%20Mn%20Doped%20(Na,K)NbO3%20Thin%20Films&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Kovacova,%20Veronika&rft.date=2020-07-27&rft.volume=26&rft.issue=42&rft.spage=9356&rft.epage=9364&rft.pages=9356-9364&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202000537&rft_dat=%3Cproquest_pubme%3E2388824652%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427213779&rft_id=info:pmid/32274864&rfr_iscdi=true