Comparative Solution Synthesis of Mn Doped (Na,K)NbO3 Thin Films
(K0.5Na0.5)NbO3 (KNN) is a promising lead‐free alternative for ferroelectric thin films such as Pb(Zr,Ti)O3. One main drawback is its high leakage current density at high electric fields, which has been previously linked to alkali non‐stoichiometry. This paper compares three acetate‐based chemical s...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2020-07, Vol.26 (42), p.9356-9364 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9364 |
---|---|
container_issue | 42 |
container_start_page | 9356 |
container_title | Chemistry : a European journal |
container_volume | 26 |
creator | Kovacova, Veronika Yang, Jung In Jacques, Leonard Ko, Song Won Zhu, Wanlin Trolier‐McKinstry, Susan |
description | (K0.5Na0.5)NbO3 (KNN) is a promising lead‐free alternative for ferroelectric thin films such as Pb(Zr,Ti)O3. One main drawback is its high leakage current density at high electric fields, which has been previously linked to alkali non‐stoichiometry. This paper compares three acetate‐based chemical solution synthesis and deposition methods for 0.5 mol % Mn‐doped KNN film fabrication, using lower crystallization temperature processes in comparison to the sintering temperatures necessary for fabrication of KNN ceramics. This paper shows the crucial role of the A site homogenization step during solution synthesis in preserving alkali chemical homogeneity of Mn doped KNN films. Chemically homogeneous films show a uniform grain size of 80 nm and a leakage current density under 2.8×10−8 A cm−2 up to electric fields as high as 600 kV cm−1, which is the highest breakdown strength reported for KNN thin films. Solution synthesis involving two‐step pyrolysis resulted in films with dense, columnar microstructures, which are interesting for orientation control and enhancement of piezoelectric properties. This study reports detailed solution synthesis and deposition processes with good dielectric, ferroelectric and breakdown field properties. An optimized fabrication method that should couple low leakage current density with dense and oriented microstructures is proposed.
Find the solution: This paper shows the crucial role of the A‐site homogenization step during solution synthesis in preserving alkali chemical homogeneity of Mn‐doped KNN films. Chemically homogeneous films show uniform grain size of 80 nm and leakage current density under 2.8×10−8 A cm−2 up to electric fields as high as 600 k cm−1. Solution synthesis involving two‐step pyrolysis resulted in films with dense, columnar microstructres, which are interesting for orientation control and enhancement of piezoelectric properties. |
doi_str_mv | 10.1002/chem.202000537 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2388824652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388824652</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2417-e85ea581b41647c5133a6849c5e7aaa6363a21b4853188ee335f60ba08056b4b3</originalsourceid><addsrcrecordid>eNpd0MtPwkAQBvCN0QiiV4-miRdMLO7u7Ks3TQUx8jiA5822LFLTl91Ww39vCcjB02Ty_TKZfAhdEzwgGNOHeGOzAcUUY8xBnqAu4ZT4IAU_RV0cMOkLDkEHXTj32ZpAAJyjDlAqmRKsix7DIitNZerk23qLIm3qpMi9xTavN9YlzivW3jT3novSrrz-zNy_3c2iOXjLTZJ7oyTN3CU6W5vU2avD7KH30XAZjv3J_OU1fJr4H5QR6VvFreGKRIwIJmNOAIxQLIi5lcYYAQIMbVPFgShlLQBfCxwZrDAXEYugh_r7u2VVfDXW1TpLXGzT1OS2aJymoJSiTHDa0tt_9LNoqrz9TlNGJSUgZdCqm4NqosyudFklmam2-q-bFgR78JOkdnvMCda75vWueX1sXofj4fS4wS-P7XLH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427213779</pqid></control><display><type>article</type><title>Comparative Solution Synthesis of Mn Doped (Na,K)NbO3 Thin Films</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kovacova, Veronika ; Yang, Jung In ; Jacques, Leonard ; Ko, Song Won ; Zhu, Wanlin ; Trolier‐McKinstry, Susan</creator><creatorcontrib>Kovacova, Veronika ; Yang, Jung In ; Jacques, Leonard ; Ko, Song Won ; Zhu, Wanlin ; Trolier‐McKinstry, Susan</creatorcontrib><description>(K0.5Na0.5)NbO3 (KNN) is a promising lead‐free alternative for ferroelectric thin films such as Pb(Zr,Ti)O3. One main drawback is its high leakage current density at high electric fields, which has been previously linked to alkali non‐stoichiometry. This paper compares three acetate‐based chemical solution synthesis and deposition methods for 0.5 mol % Mn‐doped KNN film fabrication, using lower crystallization temperature processes in comparison to the sintering temperatures necessary for fabrication of KNN ceramics. This paper shows the crucial role of the A site homogenization step during solution synthesis in preserving alkali chemical homogeneity of Mn doped KNN films. Chemically homogeneous films show a uniform grain size of 80 nm and a leakage current density under 2.8×10−8 A cm−2 up to electric fields as high as 600 kV cm−1, which is the highest breakdown strength reported for KNN thin films. Solution synthesis involving two‐step pyrolysis resulted in films with dense, columnar microstructures, which are interesting for orientation control and enhancement of piezoelectric properties. This study reports detailed solution synthesis and deposition processes with good dielectric, ferroelectric and breakdown field properties. An optimized fabrication method that should couple low leakage current density with dense and oriented microstructures is proposed.
Find the solution: This paper shows the crucial role of the A‐site homogenization step during solution synthesis in preserving alkali chemical homogeneity of Mn‐doped KNN films. Chemically homogeneous films show uniform grain size of 80 nm and leakage current density under 2.8×10−8 A cm−2 up to electric fields as high as 600 k cm−1. Solution synthesis involving two‐step pyrolysis resulted in films with dense, columnar microstructres, which are interesting for orientation control and enhancement of piezoelectric properties.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202000537</identifier><identifier>PMID: 32274864</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acetic acid ; alkali chemical homogeneity ; Chemical synthesis ; Chemistry ; Crystallization ; Current density ; Deposition ; Dielectric breakdown ; Dielectric properties ; Electric fields ; Fabrication ; Ferroelectric materials ; Ferroelectricity ; Grain size ; Homogeneity ; Lead zirconate titanates ; lead-free ferroelectric films ; Leakage ; Leakage current ; leakage current density ; Niobates ; Piezoelectricity ; Pyrolysis ; sodium potassium niobate ; sol–gel CSD ; Stoichiometry ; Thin films ; Zirconium</subject><ispartof>Chemistry : a European journal, 2020-07, Vol.26 (42), p.9356-9364</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9281-3732 ; 0000-0002-7267-9281 ; 0000-0002-3238-389X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202000537$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202000537$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32274864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kovacova, Veronika</creatorcontrib><creatorcontrib>Yang, Jung In</creatorcontrib><creatorcontrib>Jacques, Leonard</creatorcontrib><creatorcontrib>Ko, Song Won</creatorcontrib><creatorcontrib>Zhu, Wanlin</creatorcontrib><creatorcontrib>Trolier‐McKinstry, Susan</creatorcontrib><title>Comparative Solution Synthesis of Mn Doped (Na,K)NbO3 Thin Films</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>(K0.5Na0.5)NbO3 (KNN) is a promising lead‐free alternative for ferroelectric thin films such as Pb(Zr,Ti)O3. One main drawback is its high leakage current density at high electric fields, which has been previously linked to alkali non‐stoichiometry. This paper compares three acetate‐based chemical solution synthesis and deposition methods for 0.5 mol % Mn‐doped KNN film fabrication, using lower crystallization temperature processes in comparison to the sintering temperatures necessary for fabrication of KNN ceramics. This paper shows the crucial role of the A site homogenization step during solution synthesis in preserving alkali chemical homogeneity of Mn doped KNN films. Chemically homogeneous films show a uniform grain size of 80 nm and a leakage current density under 2.8×10−8 A cm−2 up to electric fields as high as 600 kV cm−1, which is the highest breakdown strength reported for KNN thin films. Solution synthesis involving two‐step pyrolysis resulted in films with dense, columnar microstructures, which are interesting for orientation control and enhancement of piezoelectric properties. This study reports detailed solution synthesis and deposition processes with good dielectric, ferroelectric and breakdown field properties. An optimized fabrication method that should couple low leakage current density with dense and oriented microstructures is proposed.
Find the solution: This paper shows the crucial role of the A‐site homogenization step during solution synthesis in preserving alkali chemical homogeneity of Mn‐doped KNN films. Chemically homogeneous films show uniform grain size of 80 nm and leakage current density under 2.8×10−8 A cm−2 up to electric fields as high as 600 k cm−1. Solution synthesis involving two‐step pyrolysis resulted in films with dense, columnar microstructres, which are interesting for orientation control and enhancement of piezoelectric properties.</description><subject>Acetic acid</subject><subject>alkali chemical homogeneity</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Crystallization</subject><subject>Current density</subject><subject>Deposition</subject><subject>Dielectric breakdown</subject><subject>Dielectric properties</subject><subject>Electric fields</subject><subject>Fabrication</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Grain size</subject><subject>Homogeneity</subject><subject>Lead zirconate titanates</subject><subject>lead-free ferroelectric films</subject><subject>Leakage</subject><subject>Leakage current</subject><subject>leakage current density</subject><subject>Niobates</subject><subject>Piezoelectricity</subject><subject>Pyrolysis</subject><subject>sodium potassium niobate</subject><subject>sol–gel CSD</subject><subject>Stoichiometry</subject><subject>Thin films</subject><subject>Zirconium</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0MtPwkAQBvCN0QiiV4-miRdMLO7u7Ks3TQUx8jiA5822LFLTl91Ww39vCcjB02Ty_TKZfAhdEzwgGNOHeGOzAcUUY8xBnqAu4ZT4IAU_RV0cMOkLDkEHXTj32ZpAAJyjDlAqmRKsix7DIitNZerk23qLIm3qpMi9xTavN9YlzivW3jT3novSrrz-zNy_3c2iOXjLTZJ7oyTN3CU6W5vU2avD7KH30XAZjv3J_OU1fJr4H5QR6VvFreGKRIwIJmNOAIxQLIi5lcYYAQIMbVPFgShlLQBfCxwZrDAXEYugh_r7u2VVfDXW1TpLXGzT1OS2aJymoJSiTHDa0tt_9LNoqrz9TlNGJSUgZdCqm4NqosyudFklmam2-q-bFgR78JOkdnvMCda75vWueX1sXofj4fS4wS-P7XLH</recordid><startdate>20200727</startdate><enddate>20200727</enddate><creator>Kovacova, Veronika</creator><creator>Yang, Jung In</creator><creator>Jacques, Leonard</creator><creator>Ko, Song Won</creator><creator>Zhu, Wanlin</creator><creator>Trolier‐McKinstry, Susan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9281-3732</orcidid><orcidid>https://orcid.org/0000-0002-7267-9281</orcidid><orcidid>https://orcid.org/0000-0002-3238-389X</orcidid></search><sort><creationdate>20200727</creationdate><title>Comparative Solution Synthesis of Mn Doped (Na,K)NbO3 Thin Films</title><author>Kovacova, Veronika ; Yang, Jung In ; Jacques, Leonard ; Ko, Song Won ; Zhu, Wanlin ; Trolier‐McKinstry, Susan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2417-e85ea581b41647c5133a6849c5e7aaa6363a21b4853188ee335f60ba08056b4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetic acid</topic><topic>alkali chemical homogeneity</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Crystallization</topic><topic>Current density</topic><topic>Deposition</topic><topic>Dielectric breakdown</topic><topic>Dielectric properties</topic><topic>Electric fields</topic><topic>Fabrication</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Grain size</topic><topic>Homogeneity</topic><topic>Lead zirconate titanates</topic><topic>lead-free ferroelectric films</topic><topic>Leakage</topic><topic>Leakage current</topic><topic>leakage current density</topic><topic>Niobates</topic><topic>Piezoelectricity</topic><topic>Pyrolysis</topic><topic>sodium potassium niobate</topic><topic>sol–gel CSD</topic><topic>Stoichiometry</topic><topic>Thin films</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kovacova, Veronika</creatorcontrib><creatorcontrib>Yang, Jung In</creatorcontrib><creatorcontrib>Jacques, Leonard</creatorcontrib><creatorcontrib>Ko, Song Won</creatorcontrib><creatorcontrib>Zhu, Wanlin</creatorcontrib><creatorcontrib>Trolier‐McKinstry, Susan</creatorcontrib><collection>PubMed</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovacova, Veronika</au><au>Yang, Jung In</au><au>Jacques, Leonard</au><au>Ko, Song Won</au><au>Zhu, Wanlin</au><au>Trolier‐McKinstry, Susan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Solution Synthesis of Mn Doped (Na,K)NbO3 Thin Films</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2020-07-27</date><risdate>2020</risdate><volume>26</volume><issue>42</issue><spage>9356</spage><epage>9364</epage><pages>9356-9364</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>(K0.5Na0.5)NbO3 (KNN) is a promising lead‐free alternative for ferroelectric thin films such as Pb(Zr,Ti)O3. One main drawback is its high leakage current density at high electric fields, which has been previously linked to alkali non‐stoichiometry. This paper compares three acetate‐based chemical solution synthesis and deposition methods for 0.5 mol % Mn‐doped KNN film fabrication, using lower crystallization temperature processes in comparison to the sintering temperatures necessary for fabrication of KNN ceramics. This paper shows the crucial role of the A site homogenization step during solution synthesis in preserving alkali chemical homogeneity of Mn doped KNN films. Chemically homogeneous films show a uniform grain size of 80 nm and a leakage current density under 2.8×10−8 A cm−2 up to electric fields as high as 600 kV cm−1, which is the highest breakdown strength reported for KNN thin films. Solution synthesis involving two‐step pyrolysis resulted in films with dense, columnar microstructures, which are interesting for orientation control and enhancement of piezoelectric properties. This study reports detailed solution synthesis and deposition processes with good dielectric, ferroelectric and breakdown field properties. An optimized fabrication method that should couple low leakage current density with dense and oriented microstructures is proposed.
Find the solution: This paper shows the crucial role of the A‐site homogenization step during solution synthesis in preserving alkali chemical homogeneity of Mn‐doped KNN films. Chemically homogeneous films show uniform grain size of 80 nm and leakage current density under 2.8×10−8 A cm−2 up to electric fields as high as 600 k cm−1. Solution synthesis involving two‐step pyrolysis resulted in films with dense, columnar microstructres, which are interesting for orientation control and enhancement of piezoelectric properties.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32274864</pmid><doi>10.1002/chem.202000537</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9281-3732</orcidid><orcidid>https://orcid.org/0000-0002-7267-9281</orcidid><orcidid>https://orcid.org/0000-0002-3238-389X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2020-07, Vol.26 (42), p.9356-9364 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_2388824652 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acetic acid alkali chemical homogeneity Chemical synthesis Chemistry Crystallization Current density Deposition Dielectric breakdown Dielectric properties Electric fields Fabrication Ferroelectric materials Ferroelectricity Grain size Homogeneity Lead zirconate titanates lead-free ferroelectric films Leakage Leakage current leakage current density Niobates Piezoelectricity Pyrolysis sodium potassium niobate sol–gel CSD Stoichiometry Thin films Zirconium |
title | Comparative Solution Synthesis of Mn Doped (Na,K)NbO3 Thin Films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A42%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Solution%20Synthesis%20of%20Mn%20Doped%20(Na,K)NbO3%20Thin%20Films&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Kovacova,%20Veronika&rft.date=2020-07-27&rft.volume=26&rft.issue=42&rft.spage=9356&rft.epage=9364&rft.pages=9356-9364&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202000537&rft_dat=%3Cproquest_pubme%3E2388824652%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427213779&rft_id=info:pmid/32274864&rfr_iscdi=true |