Effects and interactions of cadmium and zinc on root morphology and metal translocation in two populations of Hylotelephium spectabile (Boreau) H. Ohba, a potential Cd-accumulating species

The interactions between Cd and Zn in their effects on plants are inconsistent and difficult to predict. A hydroponic experiment was conducted to investigate the effects of Cd and Zn and their interactions on root morphology and metal translocation in two populations of Hylotelephium spectabile (Bor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2020-06, Vol.27 (17), p.21364-21375
Hauptverfasser: Guo, Junmei, Guo, Yue, Yang, Jun, Yang, Junxing, Zheng, Guodi, Chen, Tongbin, Li, Zhitao, Wang, Xuedong, Bian, Jianlin, Meng, Xiaofei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interactions between Cd and Zn in their effects on plants are inconsistent and difficult to predict. A hydroponic experiment was conducted to investigate the effects of Cd and Zn and their interactions on root morphology and metal translocation in two populations of Hylotelephium spectabile (Boreau) H. Ohba (Crassulaceae, HB1 and HB2). Both populations showed relative tolerance to high levels of Cd and Zn, except that the leaf biomass of HB1 significantly decreased by 44.6% with 5-mg/L Cd plus 10-mg/L Zn. Root growth was inhibited in both populations by addition of 20-mg/L Zn under Cd stress, while 10-mg/L Zn showed little impact on the root growth inhibition of HB2. Roots with diameter 0.1–0.4 mm contributed most of the total root length (RL) and root surface area (RSA) of H. spectabile . In both populations, these root parameters showed greater suppression with the combined stress of Cd plus Zn than under Cd or Zn single stress, except by adding 10-mg/L Zn under Cd stress. Moreover, HB2 maintained relatively higher RL and RSA than HB1 under the different treatments, which implied that HB2 might possess a more effective mechanism than HB1 for coping in response to Cd and Zn stress. The addition of Zn not only affected the absorption of Cd but also significantly affected the distribution of Cd in different tissues of H. spectabile . A low level of Zn led to increased Cd in the stem of HB2, but an increase in Cd in the leaf and root of HB1. Addition of 10-mg/L Zn led to a significant increase by 188% and 170% in Cd accumulation in aboveground part of HB2 under 2- and 5-mg/L Cd stress, whereas the addition of Zn had little effect on Cd accumulation in HB1. Thus, strong positive interactions of Cd and Zn occurred in HB2, which showed great potential for application in phytoremediation of soil contaminated with both Cd and Zn, warranting further investigation under field condition.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-020-08660-0