High-Conductivity and High-Capacitance Electrospun Fibers for Supercapacitor Applications

Electrospinning is a simple method for producing nanoscale or microscale fibers from a wide variety of materials. Intrinsically conductive polymers (ICPs), such as polyaniline (PANI), show higher conductivities with the use of secondary dopants like m-cresol. However, due to the low volatility of mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-04, Vol.12 (17), p.19369-19376
Hauptverfasser: Bhattacharya, Somdatta, Roy, Indroneil, Tice, Aaron, Chapman, Caitlyn, Udangawa, Ranodhi, Chakrapani, Vidhya, Plawsky, Joel L, Linhardt, Robert J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19376
container_issue 17
container_start_page 19369
container_title ACS applied materials & interfaces
container_volume 12
creator Bhattacharya, Somdatta
Roy, Indroneil
Tice, Aaron
Chapman, Caitlyn
Udangawa, Ranodhi
Chakrapani, Vidhya
Plawsky, Joel L
Linhardt, Robert J
description Electrospinning is a simple method for producing nanoscale or microscale fibers from a wide variety of materials. Intrinsically conductive polymers (ICPs), such as polyaniline (PANI), show higher conductivities with the use of secondary dopants like m-cresol. However, due to the low volatility of most secondary dopants, it has not been possible to electrospin secondary doped ICP fibers. In this work, the concept of secondary doping has been applied for the first time to electrospun fibers. Using a novel design for rotating drum electrospinning, fibers were efficiently and reliably produced from a mixture of low- and high-volatility solvents. The conductivity of electrospun PANI–poly­(ethylene oxide) (PEO) fibers prepared was 1.73 S/cm, two orders of magnitude higher than the average value reported in the literature. These conductive fibers were tested as electrodes for supercapacitors and were shown to have a specific capacitance as high as 3121 F/g at 0.1 A/g, the highest value reported, thus far, for PANI–PEO electrospun fibers.
doi_str_mv 10.1021/acsami.9b21696
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2388822774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388822774</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-24ec3f5eae5690faf81d13087107651684905da296de302d00d47f94d85c50f33</originalsourceid><addsrcrecordid>eNp1kMlLAzEYxYMoVqtXjzJHEaZmnckcS2mtUPCgHjyFNIumzGaSEfrfG5nam6dv4fcevAfADYIzBDF6kCrIxs2qLUZFVZyAC1RRmnPM8Olxp3QCLkPYQVgQDNk5mBCMS4YIvQDva_fxmS-6Vg8qum8X95lsdTZ-ZS-Vi7JVJlvWRkXfhX5os5XbGh8y2_nsZeiNVyOXznnf107J6Lo2XIEzK-tgrg9zCt5Wy9fFOt88Pz4t5ptcEgJjjqlRxDIjDSsqaKXlSCMCeYlgWTBUcFpBpiWuCm0IxBpCTUtbUc2ZYtASMgV3o2_vu6_BhCgaF5Spa9mabggCE855ylvShM5GVKUkwRsreu8a6fcCQfFbpxjrFIc6k-D24D1sG6OP-F9_CbgfgSQUu27wbYr6n9sPrq9_sA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388822774</pqid></control><display><type>article</type><title>High-Conductivity and High-Capacitance Electrospun Fibers for Supercapacitor Applications</title><source>ACS Publications</source><creator>Bhattacharya, Somdatta ; Roy, Indroneil ; Tice, Aaron ; Chapman, Caitlyn ; Udangawa, Ranodhi ; Chakrapani, Vidhya ; Plawsky, Joel L ; Linhardt, Robert J</creator><creatorcontrib>Bhattacharya, Somdatta ; Roy, Indroneil ; Tice, Aaron ; Chapman, Caitlyn ; Udangawa, Ranodhi ; Chakrapani, Vidhya ; Plawsky, Joel L ; Linhardt, Robert J</creatorcontrib><description>Electrospinning is a simple method for producing nanoscale or microscale fibers from a wide variety of materials. Intrinsically conductive polymers (ICPs), such as polyaniline (PANI), show higher conductivities with the use of secondary dopants like m-cresol. However, due to the low volatility of most secondary dopants, it has not been possible to electrospin secondary doped ICP fibers. In this work, the concept of secondary doping has been applied for the first time to electrospun fibers. Using a novel design for rotating drum electrospinning, fibers were efficiently and reliably produced from a mixture of low- and high-volatility solvents. The conductivity of electrospun PANI–poly­(ethylene oxide) (PEO) fibers prepared was 1.73 S/cm, two orders of magnitude higher than the average value reported in the literature. These conductive fibers were tested as electrodes for supercapacitors and were shown to have a specific capacitance as high as 3121 F/g at 0.1 A/g, the highest value reported, thus far, for PANI–PEO electrospun fibers.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b21696</identifier><identifier>PMID: 32275134</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2020-04, Vol.12 (17), p.19369-19376</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-24ec3f5eae5690faf81d13087107651684905da296de302d00d47f94d85c50f33</citedby><cites>FETCH-LOGICAL-a330t-24ec3f5eae5690faf81d13087107651684905da296de302d00d47f94d85c50f33</cites><orcidid>0000-0003-2219-5833 ; 0000-0001-7482-7260 ; 0000-0003-2682-3833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b21696$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b21696$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32275134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhattacharya, Somdatta</creatorcontrib><creatorcontrib>Roy, Indroneil</creatorcontrib><creatorcontrib>Tice, Aaron</creatorcontrib><creatorcontrib>Chapman, Caitlyn</creatorcontrib><creatorcontrib>Udangawa, Ranodhi</creatorcontrib><creatorcontrib>Chakrapani, Vidhya</creatorcontrib><creatorcontrib>Plawsky, Joel L</creatorcontrib><creatorcontrib>Linhardt, Robert J</creatorcontrib><title>High-Conductivity and High-Capacitance Electrospun Fibers for Supercapacitor Applications</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Electrospinning is a simple method for producing nanoscale or microscale fibers from a wide variety of materials. Intrinsically conductive polymers (ICPs), such as polyaniline (PANI), show higher conductivities with the use of secondary dopants like m-cresol. However, due to the low volatility of most secondary dopants, it has not been possible to electrospin secondary doped ICP fibers. In this work, the concept of secondary doping has been applied for the first time to electrospun fibers. Using a novel design for rotating drum electrospinning, fibers were efficiently and reliably produced from a mixture of low- and high-volatility solvents. The conductivity of electrospun PANI–poly­(ethylene oxide) (PEO) fibers prepared was 1.73 S/cm, two orders of magnitude higher than the average value reported in the literature. These conductive fibers were tested as electrodes for supercapacitors and were shown to have a specific capacitance as high as 3121 F/g at 0.1 A/g, the highest value reported, thus far, for PANI–PEO electrospun fibers.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMlLAzEYxYMoVqtXjzJHEaZmnckcS2mtUPCgHjyFNIumzGaSEfrfG5nam6dv4fcevAfADYIzBDF6kCrIxs2qLUZFVZyAC1RRmnPM8Olxp3QCLkPYQVgQDNk5mBCMS4YIvQDva_fxmS-6Vg8qum8X95lsdTZ-ZS-Vi7JVJlvWRkXfhX5os5XbGh8y2_nsZeiNVyOXznnf107J6Lo2XIEzK-tgrg9zCt5Wy9fFOt88Pz4t5ptcEgJjjqlRxDIjDSsqaKXlSCMCeYlgWTBUcFpBpiWuCm0IxBpCTUtbUc2ZYtASMgV3o2_vu6_BhCgaF5Spa9mabggCE855ylvShM5GVKUkwRsreu8a6fcCQfFbpxjrFIc6k-D24D1sG6OP-F9_CbgfgSQUu27wbYr6n9sPrq9_sA</recordid><startdate>20200429</startdate><enddate>20200429</enddate><creator>Bhattacharya, Somdatta</creator><creator>Roy, Indroneil</creator><creator>Tice, Aaron</creator><creator>Chapman, Caitlyn</creator><creator>Udangawa, Ranodhi</creator><creator>Chakrapani, Vidhya</creator><creator>Plawsky, Joel L</creator><creator>Linhardt, Robert J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2219-5833</orcidid><orcidid>https://orcid.org/0000-0001-7482-7260</orcidid><orcidid>https://orcid.org/0000-0003-2682-3833</orcidid></search><sort><creationdate>20200429</creationdate><title>High-Conductivity and High-Capacitance Electrospun Fibers for Supercapacitor Applications</title><author>Bhattacharya, Somdatta ; Roy, Indroneil ; Tice, Aaron ; Chapman, Caitlyn ; Udangawa, Ranodhi ; Chakrapani, Vidhya ; Plawsky, Joel L ; Linhardt, Robert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-24ec3f5eae5690faf81d13087107651684905da296de302d00d47f94d85c50f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhattacharya, Somdatta</creatorcontrib><creatorcontrib>Roy, Indroneil</creatorcontrib><creatorcontrib>Tice, Aaron</creatorcontrib><creatorcontrib>Chapman, Caitlyn</creatorcontrib><creatorcontrib>Udangawa, Ranodhi</creatorcontrib><creatorcontrib>Chakrapani, Vidhya</creatorcontrib><creatorcontrib>Plawsky, Joel L</creatorcontrib><creatorcontrib>Linhardt, Robert J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhattacharya, Somdatta</au><au>Roy, Indroneil</au><au>Tice, Aaron</au><au>Chapman, Caitlyn</au><au>Udangawa, Ranodhi</au><au>Chakrapani, Vidhya</au><au>Plawsky, Joel L</au><au>Linhardt, Robert J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Conductivity and High-Capacitance Electrospun Fibers for Supercapacitor Applications</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-04-29</date><risdate>2020</risdate><volume>12</volume><issue>17</issue><spage>19369</spage><epage>19376</epage><pages>19369-19376</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Electrospinning is a simple method for producing nanoscale or microscale fibers from a wide variety of materials. Intrinsically conductive polymers (ICPs), such as polyaniline (PANI), show higher conductivities with the use of secondary dopants like m-cresol. However, due to the low volatility of most secondary dopants, it has not been possible to electrospin secondary doped ICP fibers. In this work, the concept of secondary doping has been applied for the first time to electrospun fibers. Using a novel design for rotating drum electrospinning, fibers were efficiently and reliably produced from a mixture of low- and high-volatility solvents. The conductivity of electrospun PANI–poly­(ethylene oxide) (PEO) fibers prepared was 1.73 S/cm, two orders of magnitude higher than the average value reported in the literature. These conductive fibers were tested as electrodes for supercapacitors and were shown to have a specific capacitance as high as 3121 F/g at 0.1 A/g, the highest value reported, thus far, for PANI–PEO electrospun fibers.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32275134</pmid><doi>10.1021/acsami.9b21696</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2219-5833</orcidid><orcidid>https://orcid.org/0000-0001-7482-7260</orcidid><orcidid>https://orcid.org/0000-0003-2682-3833</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-04, Vol.12 (17), p.19369-19376
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2388822774
source ACS Publications
title High-Conductivity and High-Capacitance Electrospun Fibers for Supercapacitor Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Conductivity%20and%20High-Capacitance%20Electrospun%20Fibers%20for%20Supercapacitor%20Applications&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Bhattacharya,%20Somdatta&rft.date=2020-04-29&rft.volume=12&rft.issue=17&rft.spage=19369&rft.epage=19376&rft.pages=19369-19376&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b21696&rft_dat=%3Cproquest_cross%3E2388822774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388822774&rft_id=info:pmid/32275134&rfr_iscdi=true