Simulation with RADinitio improves RADseq experimental design and sheds light on sources of missing data
Restriction‐site associated DNA sequencing (RADseq) has become a powerful and versatile tool in modern population genomics, enabling large‐scale evolutionary and genomic analyses in otherwise inaccessible biological systems. With its widespread use, different variants on the protocol have been devel...
Gespeichert in:
Veröffentlicht in: | Molecular ecology resources 2021-02, Vol.21 (2), p.363-378 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 378 |
---|---|
container_issue | 2 |
container_start_page | 363 |
container_title | Molecular ecology resources |
container_volume | 21 |
creator | Rivera‐Colón, Angel G. Rochette, Nicolas C. Catchen, Julian M. |
description | Restriction‐site associated DNA sequencing (RADseq) has become a powerful and versatile tool in modern population genomics, enabling large‐scale evolutionary and genomic analyses in otherwise inaccessible biological systems. With its widespread use, different variants on the protocol have been developed to suit specific experimental needs. Researchers face the challenge of choosing the optimal molecular and sequencing protocols for their reduced representation experimental design, an often‐complicated process. Strategic errors can lead to biased data generation that has reduced power to answer biological questions. Here, we present RADinitio, simulation software for the selection and optimization of RADseq experiments via the generation of sequencing data that behave similarly to empirical sources. RADinitio provides an evolutionary simulation of populations, implementation of various RADseq protocols with customizable parameters, and thorough assessment of missing data. We test the efficacy of the software using different RAD protocols across several organisms, highlighting the importance of protocol selection on the magnitude and quality of data acquired. Additionally, we test the effects of RAD library preparation and sequencing on allelic dropout, observing that library preparation and sequencing often contributes more to missing alleles than population‐level variation.
see also the Perspective by Marvin Choquet |
doi_str_mv | 10.1111/1755-0998.13163 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2388819825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477444111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4123-afd71371d6717ecfd933638c110f100593698e2c747a112fe1681a70a3b009543</originalsourceid><addsrcrecordid>eNqFkUlPwzAQhS0EYimcuSFLXLi09cRObB8rdqmAxCJxs0wyaV1lKXEC9N_j0tIDF-bi8eibp6c3hBwDG0CoIcg47jOt1QA4JHyL7G8m25teve6RA-9njCVMS7FL9ngUyZgLvU-mT67sCtu6uqKfrp3Sx9GFq1z4U1fOm_oD_XLk8Z3i1xwbV2LV2oJm6N2korbKqJ9i5mnhJtOWBhVfd00atuqcls57V01oZlt7SHZyW3g8Wr898nJ1-Xx-0x8_XN-ej8b9VEDE-zbPJHAJWSJBYppnmvOEqxSA5cBYrHmiFUapFNICRDlCosBKZvkbYzoWvEfOVrrB_HuHvjXBRYpFYSusO28irpQCraI4oKd_0FnwXgV3JhJSCiFCxIEarqi0qb1vMDfzkIJtFgaYWR7BLGM2y8jNzxHCxslat3srMdvwv6kHIF4Bn67AxX965u7yfiX8DbUwj78</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477444111</pqid></control><display><type>article</type><title>Simulation with RADinitio improves RADseq experimental design and sheds light on sources of missing data</title><source>Wiley Journals</source><creator>Rivera‐Colón, Angel G. ; Rochette, Nicolas C. ; Catchen, Julian M.</creator><creatorcontrib>Rivera‐Colón, Angel G. ; Rochette, Nicolas C. ; Catchen, Julian M.</creatorcontrib><description>Restriction‐site associated DNA sequencing (RADseq) has become a powerful and versatile tool in modern population genomics, enabling large‐scale evolutionary and genomic analyses in otherwise inaccessible biological systems. With its widespread use, different variants on the protocol have been developed to suit specific experimental needs. Researchers face the challenge of choosing the optimal molecular and sequencing protocols for their reduced representation experimental design, an often‐complicated process. Strategic errors can lead to biased data generation that has reduced power to answer biological questions. Here, we present RADinitio, simulation software for the selection and optimization of RADseq experiments via the generation of sequencing data that behave similarly to empirical sources. RADinitio provides an evolutionary simulation of populations, implementation of various RADseq protocols with customizable parameters, and thorough assessment of missing data. We test the efficacy of the software using different RAD protocols across several organisms, highlighting the importance of protocol selection on the magnitude and quality of data acquired. Additionally, we test the effects of RAD library preparation and sequencing on allelic dropout, observing that library preparation and sequencing often contributes more to missing alleles than population‐level variation.
see also the Perspective by Marvin Choquet</description><identifier>ISSN: 1755-098X</identifier><identifier>EISSN: 1755-0998</identifier><identifier>DOI: 10.1111/1755-0998.13163</identifier><identifier>PMID: 32275349</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>bioinformatics ; Biological evolution ; Computer programs ; Data acquisition ; Design of experiments ; DNA sequencing ; Empirical analysis ; Experimental design ; genetics ; Genomic analysis ; Libraries ; Missing data ; Optimization ; population ; Population genetics ; RADseq ; Simulation ; simulations ; Software</subject><ispartof>Molecular ecology resources, 2021-02, Vol.21 (2), p.363-378</ispartof><rights>2020 John Wiley & Sons Ltd</rights><rights>2020 John Wiley & Sons Ltd.</rights><rights>Copyright © 2021 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4123-afd71371d6717ecfd933638c110f100593698e2c747a112fe1681a70a3b009543</citedby><cites>FETCH-LOGICAL-c4123-afd71371d6717ecfd933638c110f100593698e2c747a112fe1681a70a3b009543</cites><orcidid>0000-0002-4798-660X ; 0000-0001-9097-3241 ; 0000-0003-1899-1765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1755-0998.13163$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1755-0998.13163$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32275349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rivera‐Colón, Angel G.</creatorcontrib><creatorcontrib>Rochette, Nicolas C.</creatorcontrib><creatorcontrib>Catchen, Julian M.</creatorcontrib><title>Simulation with RADinitio improves RADseq experimental design and sheds light on sources of missing data</title><title>Molecular ecology resources</title><addtitle>Mol Ecol Resour</addtitle><description>Restriction‐site associated DNA sequencing (RADseq) has become a powerful and versatile tool in modern population genomics, enabling large‐scale evolutionary and genomic analyses in otherwise inaccessible biological systems. With its widespread use, different variants on the protocol have been developed to suit specific experimental needs. Researchers face the challenge of choosing the optimal molecular and sequencing protocols for their reduced representation experimental design, an often‐complicated process. Strategic errors can lead to biased data generation that has reduced power to answer biological questions. Here, we present RADinitio, simulation software for the selection and optimization of RADseq experiments via the generation of sequencing data that behave similarly to empirical sources. RADinitio provides an evolutionary simulation of populations, implementation of various RADseq protocols with customizable parameters, and thorough assessment of missing data. We test the efficacy of the software using different RAD protocols across several organisms, highlighting the importance of protocol selection on the magnitude and quality of data acquired. Additionally, we test the effects of RAD library preparation and sequencing on allelic dropout, observing that library preparation and sequencing often contributes more to missing alleles than population‐level variation.
see also the Perspective by Marvin Choquet</description><subject>bioinformatics</subject><subject>Biological evolution</subject><subject>Computer programs</subject><subject>Data acquisition</subject><subject>Design of experiments</subject><subject>DNA sequencing</subject><subject>Empirical analysis</subject><subject>Experimental design</subject><subject>genetics</subject><subject>Genomic analysis</subject><subject>Libraries</subject><subject>Missing data</subject><subject>Optimization</subject><subject>population</subject><subject>Population genetics</subject><subject>RADseq</subject><subject>Simulation</subject><subject>simulations</subject><subject>Software</subject><issn>1755-098X</issn><issn>1755-0998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkUlPwzAQhS0EYimcuSFLXLi09cRObB8rdqmAxCJxs0wyaV1lKXEC9N_j0tIDF-bi8eibp6c3hBwDG0CoIcg47jOt1QA4JHyL7G8m25teve6RA-9njCVMS7FL9ngUyZgLvU-mT67sCtu6uqKfrp3Sx9GFq1z4U1fOm_oD_XLk8Z3i1xwbV2LV2oJm6N2korbKqJ9i5mnhJtOWBhVfd00atuqcls57V01oZlt7SHZyW3g8Wr898nJ1-Xx-0x8_XN-ej8b9VEDE-zbPJHAJWSJBYppnmvOEqxSA5cBYrHmiFUapFNICRDlCosBKZvkbYzoWvEfOVrrB_HuHvjXBRYpFYSusO28irpQCraI4oKd_0FnwXgV3JhJSCiFCxIEarqi0qb1vMDfzkIJtFgaYWR7BLGM2y8jNzxHCxslat3srMdvwv6kHIF4Bn67AxX965u7yfiX8DbUwj78</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Rivera‐Colón, Angel G.</creator><creator>Rochette, Nicolas C.</creator><creator>Catchen, Julian M.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4798-660X</orcidid><orcidid>https://orcid.org/0000-0001-9097-3241</orcidid><orcidid>https://orcid.org/0000-0003-1899-1765</orcidid></search><sort><creationdate>202102</creationdate><title>Simulation with RADinitio improves RADseq experimental design and sheds light on sources of missing data</title><author>Rivera‐Colón, Angel G. ; Rochette, Nicolas C. ; Catchen, Julian M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4123-afd71371d6717ecfd933638c110f100593698e2c747a112fe1681a70a3b009543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>bioinformatics</topic><topic>Biological evolution</topic><topic>Computer programs</topic><topic>Data acquisition</topic><topic>Design of experiments</topic><topic>DNA sequencing</topic><topic>Empirical analysis</topic><topic>Experimental design</topic><topic>genetics</topic><topic>Genomic analysis</topic><topic>Libraries</topic><topic>Missing data</topic><topic>Optimization</topic><topic>population</topic><topic>Population genetics</topic><topic>RADseq</topic><topic>Simulation</topic><topic>simulations</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivera‐Colón, Angel G.</creatorcontrib><creatorcontrib>Rochette, Nicolas C.</creatorcontrib><creatorcontrib>Catchen, Julian M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivera‐Colón, Angel G.</au><au>Rochette, Nicolas C.</au><au>Catchen, Julian M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation with RADinitio improves RADseq experimental design and sheds light on sources of missing data</atitle><jtitle>Molecular ecology resources</jtitle><addtitle>Mol Ecol Resour</addtitle><date>2021-02</date><risdate>2021</risdate><volume>21</volume><issue>2</issue><spage>363</spage><epage>378</epage><pages>363-378</pages><issn>1755-098X</issn><eissn>1755-0998</eissn><abstract>Restriction‐site associated DNA sequencing (RADseq) has become a powerful and versatile tool in modern population genomics, enabling large‐scale evolutionary and genomic analyses in otherwise inaccessible biological systems. With its widespread use, different variants on the protocol have been developed to suit specific experimental needs. Researchers face the challenge of choosing the optimal molecular and sequencing protocols for their reduced representation experimental design, an often‐complicated process. Strategic errors can lead to biased data generation that has reduced power to answer biological questions. Here, we present RADinitio, simulation software for the selection and optimization of RADseq experiments via the generation of sequencing data that behave similarly to empirical sources. RADinitio provides an evolutionary simulation of populations, implementation of various RADseq protocols with customizable parameters, and thorough assessment of missing data. We test the efficacy of the software using different RAD protocols across several organisms, highlighting the importance of protocol selection on the magnitude and quality of data acquired. Additionally, we test the effects of RAD library preparation and sequencing on allelic dropout, observing that library preparation and sequencing often contributes more to missing alleles than population‐level variation.
see also the Perspective by Marvin Choquet</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32275349</pmid><doi>10.1111/1755-0998.13163</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4798-660X</orcidid><orcidid>https://orcid.org/0000-0001-9097-3241</orcidid><orcidid>https://orcid.org/0000-0003-1899-1765</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-098X |
ispartof | Molecular ecology resources, 2021-02, Vol.21 (2), p.363-378 |
issn | 1755-098X 1755-0998 |
language | eng |
recordid | cdi_proquest_miscellaneous_2388819825 |
source | Wiley Journals |
subjects | bioinformatics Biological evolution Computer programs Data acquisition Design of experiments DNA sequencing Empirical analysis Experimental design genetics Genomic analysis Libraries Missing data Optimization population Population genetics RADseq Simulation simulations Software |
title | Simulation with RADinitio improves RADseq experimental design and sheds light on sources of missing data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20with%20RADinitio%20improves%20RADseq%20experimental%20design%20and%20sheds%20light%20on%20sources%20of%20missing%20data&rft.jtitle=Molecular%20ecology%20resources&rft.au=Rivera%E2%80%90Col%C3%B3n,%20Angel%20G.&rft.date=2021-02&rft.volume=21&rft.issue=2&rft.spage=363&rft.epage=378&rft.pages=363-378&rft.issn=1755-098X&rft.eissn=1755-0998&rft_id=info:doi/10.1111/1755-0998.13163&rft_dat=%3Cproquest_cross%3E2477444111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477444111&rft_id=info:pmid/32275349&rfr_iscdi=true |