A Bayesian Hierarchical Summary Receiver Operating Characteristic Model for Network Meta-Analysis of Diagnostic Tests
In studies evaluating the accuracy of diagnostic tests, three designs are commonly used, crossover, randomized, and noncomparative. Existing methods for meta-analysis of diagnostic tests mainly consider the simple cases in which the reference test in all or none of the studies can be considered a go...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2019-07, Vol.114 (527), p.949-961 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 961 |
---|---|
container_issue | 527 |
container_start_page | 949 |
container_title | Journal of the American Statistical Association |
container_volume | 114 |
creator | Lian, Qinshu Hodges, James S. Chu, Haitao |
description | In studies evaluating the accuracy of diagnostic tests, three designs are commonly used, crossover, randomized, and noncomparative. Existing methods for meta-analysis of diagnostic tests mainly consider the simple cases in which the reference test in all or none of the studies can be considered a gold standard test, and in which all studies use either a randomized or noncomparative design. The proliferation of diagnostic instruments and the diversity of study designs create a need for more general methods to combine studies that include or do not include a gold standard test and that use various designs. This article extends the Bayesian hierarchical summary receiver operating characteristic model to network meta-analysis of diagnostic tests to simultaneously compare multiple tests within a missing data framework. The method accounts for correlations between multiple tests and for heterogeneity between studies. It also allows different studies to include different subsets of diagnostic tests and provides flexibility in the choice of summary statistics. The model is evaluated using simulations and illustrated using real data on tests for deep vein thrombosis, with sensitivity analyses. Supplementary materials for this article are available online. |
doi_str_mv | 10.1080/01621459.2018.1476239 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2388775886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45218567</jstor_id><sourcerecordid>45218567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-6aca6810eb88e06a708e329bd1d835a0c27617ea3c65b8b78b3a3a6799e07d2e3</originalsourceid><addsrcrecordid>eNqNkltvEzEQhVcIREvhJ4AsISReNviy68sLagiXIrVUgiLxZs16J4nDZh3s3aL8exySVoUHhF_8MN8cnZk5RfGU0Qmjmr6iTHJW1WbCKdMTVinJhblXHLNaqJKr6tv94njHlDvoqHiU0ormp7R-WBwJppSqGD0uxil5A1tMHnpy5jFCdEvvoCNfxvUa4pZ8Rof-GiO53OTq4PsFmS0hghsw-jR4Ry5Cix2Zh0g-4fAzxO_kAgcopz102-QTCXPy1sOiD7_pK0xDelw8mEOX8MnhPym-vn93NTsrzy8_fJxNz0tXGz6UEhxIzSg2WiOVoKhGwU3TslaLGqjjSjKFIJysG90o3QgQIJUxSFXLUZwUr_e6m7FZY-uwHyJ0dhP9bjYbwNs_K71f2kW4tlJraiqaBV4eBGL4MWbrdu2Tw66DHsOYLBdaK1VrLf8DZaYyFacio8__QldhjHlfmeJGGlNV3GSq3lMuhpQizm99M2p3GbA3GbC7DNhDBnLfs7tD33bdHD0DL_bAKg0h3lXlgipb1ZzpWqrMne453-frriHftmvtANsuxHmE3vmURf_p5RfTjc1O</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296994429</pqid></control><display><type>article</type><title>A Bayesian Hierarchical Summary Receiver Operating Characteristic Model for Network Meta-Analysis of Diagnostic Tests</title><source>Taylor & Francis Journals Complete</source><creator>Lian, Qinshu ; Hodges, James S. ; Chu, Haitao</creator><creatorcontrib>Lian, Qinshu ; Hodges, James S. ; Chu, Haitao</creatorcontrib><description>In studies evaluating the accuracy of diagnostic tests, three designs are commonly used, crossover, randomized, and noncomparative. Existing methods for meta-analysis of diagnostic tests mainly consider the simple cases in which the reference test in all or none of the studies can be considered a gold standard test, and in which all studies use either a randomized or noncomparative design. The proliferation of diagnostic instruments and the diversity of study designs create a need for more general methods to combine studies that include or do not include a gold standard test and that use various designs. This article extends the Bayesian hierarchical summary receiver operating characteristic model to network meta-analysis of diagnostic tests to simultaneously compare multiple tests within a missing data framework. The method accounts for correlations between multiple tests and for heterogeneity between studies. It also allows different studies to include different subsets of diagnostic tests and provides flexibility in the choice of summary statistics. The model is evaluated using simulations and illustrated using real data on tests for deep vein thrombosis, with sensitivity analyses. Supplementary materials for this article are available online.</description><identifier>ISSN: 0162-1459</identifier><identifier>ISSN: 1537-274X</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2018.1476239</identifier><identifier>PMID: 31777410</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>Applications and Case Studies ; Bayesian analysis ; Bayesian hierarchical model ; Bayesian theory ; Computer simulation ; Deep vein thrombosis ; Diagnostic systems ; diagnostic techniques ; Diagnostic tests ; equations ; Flexibility ; Meta-analysis ; Missing data ; Multiple tests comparison ; Network meta-analysis ; Randomization ; Regression analysis ; Sensitivity analysis ; Statistical methods ; Statistical tests ; Statistics ; Subsets ; Thrombosis</subject><ispartof>Journal of the American Statistical Association, 2019-07, Vol.114 (527), p.949-961</ispartof><rights>2018 American Statistical Association 2018</rights><rights>Copyright © 2019 American Statistical Association</rights><rights>2018 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-6aca6810eb88e06a708e329bd1d835a0c27617ea3c65b8b78b3a3a6799e07d2e3</citedby><cites>FETCH-LOGICAL-c592t-6aca6810eb88e06a708e329bd1d835a0c27617ea3c65b8b78b3a3a6799e07d2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01621459.2018.1476239$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01621459.2018.1476239$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31777410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lian, Qinshu</creatorcontrib><creatorcontrib>Hodges, James S.</creatorcontrib><creatorcontrib>Chu, Haitao</creatorcontrib><title>A Bayesian Hierarchical Summary Receiver Operating Characteristic Model for Network Meta-Analysis of Diagnostic Tests</title><title>Journal of the American Statistical Association</title><addtitle>J Am Stat Assoc</addtitle><description>In studies evaluating the accuracy of diagnostic tests, three designs are commonly used, crossover, randomized, and noncomparative. Existing methods for meta-analysis of diagnostic tests mainly consider the simple cases in which the reference test in all or none of the studies can be considered a gold standard test, and in which all studies use either a randomized or noncomparative design. The proliferation of diagnostic instruments and the diversity of study designs create a need for more general methods to combine studies that include or do not include a gold standard test and that use various designs. This article extends the Bayesian hierarchical summary receiver operating characteristic model to network meta-analysis of diagnostic tests to simultaneously compare multiple tests within a missing data framework. The method accounts for correlations between multiple tests and for heterogeneity between studies. It also allows different studies to include different subsets of diagnostic tests and provides flexibility in the choice of summary statistics. The model is evaluated using simulations and illustrated using real data on tests for deep vein thrombosis, with sensitivity analyses. Supplementary materials for this article are available online.</description><subject>Applications and Case Studies</subject><subject>Bayesian analysis</subject><subject>Bayesian hierarchical model</subject><subject>Bayesian theory</subject><subject>Computer simulation</subject><subject>Deep vein thrombosis</subject><subject>Diagnostic systems</subject><subject>diagnostic techniques</subject><subject>Diagnostic tests</subject><subject>equations</subject><subject>Flexibility</subject><subject>Meta-analysis</subject><subject>Missing data</subject><subject>Multiple tests comparison</subject><subject>Network meta-analysis</subject><subject>Randomization</subject><subject>Regression analysis</subject><subject>Sensitivity analysis</subject><subject>Statistical methods</subject><subject>Statistical tests</subject><subject>Statistics</subject><subject>Subsets</subject><subject>Thrombosis</subject><issn>0162-1459</issn><issn>1537-274X</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkltvEzEQhVcIREvhJ4AsISReNviy68sLagiXIrVUgiLxZs16J4nDZh3s3aL8exySVoUHhF_8MN8cnZk5RfGU0Qmjmr6iTHJW1WbCKdMTVinJhblXHLNaqJKr6tv94njHlDvoqHiU0ormp7R-WBwJppSqGD0uxil5A1tMHnpy5jFCdEvvoCNfxvUa4pZ8Rof-GiO53OTq4PsFmS0hghsw-jR4Ry5Cix2Zh0g-4fAzxO_kAgcopz102-QTCXPy1sOiD7_pK0xDelw8mEOX8MnhPym-vn93NTsrzy8_fJxNz0tXGz6UEhxIzSg2WiOVoKhGwU3TslaLGqjjSjKFIJysG90o3QgQIJUxSFXLUZwUr_e6m7FZY-uwHyJ0dhP9bjYbwNs_K71f2kW4tlJraiqaBV4eBGL4MWbrdu2Tw66DHsOYLBdaK1VrLf8DZaYyFacio8__QldhjHlfmeJGGlNV3GSq3lMuhpQizm99M2p3GbA3GbC7DNhDBnLfs7tD33bdHD0DL_bAKg0h3lXlgipb1ZzpWqrMne453-frriHftmvtANsuxHmE3vmURf_p5RfTjc1O</recordid><startdate>20190703</startdate><enddate>20190703</enddate><creator>Lian, Qinshu</creator><creator>Hodges, James S.</creator><creator>Chu, Haitao</creator><general>Taylor & Francis</general><general>Taylor & Francis Group, LLC</general><general>Taylor & Francis Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20190703</creationdate><title>A Bayesian Hierarchical Summary Receiver Operating Characteristic Model for Network Meta-Analysis of Diagnostic Tests</title><author>Lian, Qinshu ; Hodges, James S. ; Chu, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-6aca6810eb88e06a708e329bd1d835a0c27617ea3c65b8b78b3a3a6799e07d2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications and Case Studies</topic><topic>Bayesian analysis</topic><topic>Bayesian hierarchical model</topic><topic>Bayesian theory</topic><topic>Computer simulation</topic><topic>Deep vein thrombosis</topic><topic>Diagnostic systems</topic><topic>diagnostic techniques</topic><topic>Diagnostic tests</topic><topic>equations</topic><topic>Flexibility</topic><topic>Meta-analysis</topic><topic>Missing data</topic><topic>Multiple tests comparison</topic><topic>Network meta-analysis</topic><topic>Randomization</topic><topic>Regression analysis</topic><topic>Sensitivity analysis</topic><topic>Statistical methods</topic><topic>Statistical tests</topic><topic>Statistics</topic><topic>Subsets</topic><topic>Thrombosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lian, Qinshu</creatorcontrib><creatorcontrib>Hodges, James S.</creatorcontrib><creatorcontrib>Chu, Haitao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lian, Qinshu</au><au>Hodges, James S.</au><au>Chu, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Hierarchical Summary Receiver Operating Characteristic Model for Network Meta-Analysis of Diagnostic Tests</atitle><jtitle>Journal of the American Statistical Association</jtitle><addtitle>J Am Stat Assoc</addtitle><date>2019-07-03</date><risdate>2019</risdate><volume>114</volume><issue>527</issue><spage>949</spage><epage>961</epage><pages>949-961</pages><issn>0162-1459</issn><issn>1537-274X</issn><eissn>1537-274X</eissn><abstract>In studies evaluating the accuracy of diagnostic tests, three designs are commonly used, crossover, randomized, and noncomparative. Existing methods for meta-analysis of diagnostic tests mainly consider the simple cases in which the reference test in all or none of the studies can be considered a gold standard test, and in which all studies use either a randomized or noncomparative design. The proliferation of diagnostic instruments and the diversity of study designs create a need for more general methods to combine studies that include or do not include a gold standard test and that use various designs. This article extends the Bayesian hierarchical summary receiver operating characteristic model to network meta-analysis of diagnostic tests to simultaneously compare multiple tests within a missing data framework. The method accounts for correlations between multiple tests and for heterogeneity between studies. It also allows different studies to include different subsets of diagnostic tests and provides flexibility in the choice of summary statistics. The model is evaluated using simulations and illustrated using real data on tests for deep vein thrombosis, with sensitivity analyses. Supplementary materials for this article are available online.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>31777410</pmid><doi>10.1080/01621459.2018.1476239</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 2019-07, Vol.114 (527), p.949-961 |
issn | 0162-1459 1537-274X 1537-274X |
language | eng |
recordid | cdi_proquest_miscellaneous_2388775886 |
source | Taylor & Francis Journals Complete |
subjects | Applications and Case Studies Bayesian analysis Bayesian hierarchical model Bayesian theory Computer simulation Deep vein thrombosis Diagnostic systems diagnostic techniques Diagnostic tests equations Flexibility Meta-analysis Missing data Multiple tests comparison Network meta-analysis Randomization Regression analysis Sensitivity analysis Statistical methods Statistical tests Statistics Subsets Thrombosis |
title | A Bayesian Hierarchical Summary Receiver Operating Characteristic Model for Network Meta-Analysis of Diagnostic Tests |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A14%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Hierarchical%20Summary%20Receiver%20Operating%20Characteristic%20Model%20for%20Network%20Meta-Analysis%20of%20Diagnostic%20Tests&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Lian,%20Qinshu&rft.date=2019-07-03&rft.volume=114&rft.issue=527&rft.spage=949&rft.epage=961&rft.pages=949-961&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2018.1476239&rft_dat=%3Cjstor_proqu%3E45218567%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296994429&rft_id=info:pmid/31777410&rft_jstor_id=45218567&rfr_iscdi=true |