A Bayesian Hierarchical Summary Receiver Operating Characteristic Model for Network Meta-Analysis of Diagnostic Tests

In studies evaluating the accuracy of diagnostic tests, three designs are commonly used, crossover, randomized, and noncomparative. Existing methods for meta-analysis of diagnostic tests mainly consider the simple cases in which the reference test in all or none of the studies can be considered a go...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2019-07, Vol.114 (527), p.949-961
Hauptverfasser: Lian, Qinshu, Hodges, James S., Chu, Haitao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 961
container_issue 527
container_start_page 949
container_title Journal of the American Statistical Association
container_volume 114
creator Lian, Qinshu
Hodges, James S.
Chu, Haitao
description In studies evaluating the accuracy of diagnostic tests, three designs are commonly used, crossover, randomized, and noncomparative. Existing methods for meta-analysis of diagnostic tests mainly consider the simple cases in which the reference test in all or none of the studies can be considered a gold standard test, and in which all studies use either a randomized or noncomparative design. The proliferation of diagnostic instruments and the diversity of study designs create a need for more general methods to combine studies that include or do not include a gold standard test and that use various designs. This article extends the Bayesian hierarchical summary receiver operating characteristic model to network meta-analysis of diagnostic tests to simultaneously compare multiple tests within a missing data framework. The method accounts for correlations between multiple tests and for heterogeneity between studies. It also allows different studies to include different subsets of diagnostic tests and provides flexibility in the choice of summary statistics. The model is evaluated using simulations and illustrated using real data on tests for deep vein thrombosis, with sensitivity analyses. Supplementary materials for this article are available online.
doi_str_mv 10.1080/01621459.2018.1476239
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2388775886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45218567</jstor_id><sourcerecordid>45218567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-6aca6810eb88e06a708e329bd1d835a0c27617ea3c65b8b78b3a3a6799e07d2e3</originalsourceid><addsrcrecordid>eNqNkltvEzEQhVcIREvhJ4AsISReNviy68sLagiXIrVUgiLxZs16J4nDZh3s3aL8exySVoUHhF_8MN8cnZk5RfGU0Qmjmr6iTHJW1WbCKdMTVinJhblXHLNaqJKr6tv94njHlDvoqHiU0ormp7R-WBwJppSqGD0uxil5A1tMHnpy5jFCdEvvoCNfxvUa4pZ8Rof-GiO53OTq4PsFmS0hghsw-jR4Ry5Cix2Zh0g-4fAzxO_kAgcopz102-QTCXPy1sOiD7_pK0xDelw8mEOX8MnhPym-vn93NTsrzy8_fJxNz0tXGz6UEhxIzSg2WiOVoKhGwU3TslaLGqjjSjKFIJysG90o3QgQIJUxSFXLUZwUr_e6m7FZY-uwHyJ0dhP9bjYbwNs_K71f2kW4tlJraiqaBV4eBGL4MWbrdu2Tw66DHsOYLBdaK1VrLf8DZaYyFacio8__QldhjHlfmeJGGlNV3GSq3lMuhpQizm99M2p3GbA3GbC7DNhDBnLfs7tD33bdHD0DL_bAKg0h3lXlgipb1ZzpWqrMne453-frriHftmvtANsuxHmE3vmURf_p5RfTjc1O</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296994429</pqid></control><display><type>article</type><title>A Bayesian Hierarchical Summary Receiver Operating Characteristic Model for Network Meta-Analysis of Diagnostic Tests</title><source>Taylor &amp; Francis Journals Complete</source><creator>Lian, Qinshu ; Hodges, James S. ; Chu, Haitao</creator><creatorcontrib>Lian, Qinshu ; Hodges, James S. ; Chu, Haitao</creatorcontrib><description>In studies evaluating the accuracy of diagnostic tests, three designs are commonly used, crossover, randomized, and noncomparative. Existing methods for meta-analysis of diagnostic tests mainly consider the simple cases in which the reference test in all or none of the studies can be considered a gold standard test, and in which all studies use either a randomized or noncomparative design. The proliferation of diagnostic instruments and the diversity of study designs create a need for more general methods to combine studies that include or do not include a gold standard test and that use various designs. This article extends the Bayesian hierarchical summary receiver operating characteristic model to network meta-analysis of diagnostic tests to simultaneously compare multiple tests within a missing data framework. The method accounts for correlations between multiple tests and for heterogeneity between studies. It also allows different studies to include different subsets of diagnostic tests and provides flexibility in the choice of summary statistics. The model is evaluated using simulations and illustrated using real data on tests for deep vein thrombosis, with sensitivity analyses. Supplementary materials for this article are available online.</description><identifier>ISSN: 0162-1459</identifier><identifier>ISSN: 1537-274X</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2018.1476239</identifier><identifier>PMID: 31777410</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Applications and Case Studies ; Bayesian analysis ; Bayesian hierarchical model ; Bayesian theory ; Computer simulation ; Deep vein thrombosis ; Diagnostic systems ; diagnostic techniques ; Diagnostic tests ; equations ; Flexibility ; Meta-analysis ; Missing data ; Multiple tests comparison ; Network meta-analysis ; Randomization ; Regression analysis ; Sensitivity analysis ; Statistical methods ; Statistical tests ; Statistics ; Subsets ; Thrombosis</subject><ispartof>Journal of the American Statistical Association, 2019-07, Vol.114 (527), p.949-961</ispartof><rights>2018 American Statistical Association 2018</rights><rights>Copyright © 2019 American Statistical Association</rights><rights>2018 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-6aca6810eb88e06a708e329bd1d835a0c27617ea3c65b8b78b3a3a6799e07d2e3</citedby><cites>FETCH-LOGICAL-c592t-6aca6810eb88e06a708e329bd1d835a0c27617ea3c65b8b78b3a3a6799e07d2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01621459.2018.1476239$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01621459.2018.1476239$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31777410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lian, Qinshu</creatorcontrib><creatorcontrib>Hodges, James S.</creatorcontrib><creatorcontrib>Chu, Haitao</creatorcontrib><title>A Bayesian Hierarchical Summary Receiver Operating Characteristic Model for Network Meta-Analysis of Diagnostic Tests</title><title>Journal of the American Statistical Association</title><addtitle>J Am Stat Assoc</addtitle><description>In studies evaluating the accuracy of diagnostic tests, three designs are commonly used, crossover, randomized, and noncomparative. Existing methods for meta-analysis of diagnostic tests mainly consider the simple cases in which the reference test in all or none of the studies can be considered a gold standard test, and in which all studies use either a randomized or noncomparative design. The proliferation of diagnostic instruments and the diversity of study designs create a need for more general methods to combine studies that include or do not include a gold standard test and that use various designs. This article extends the Bayesian hierarchical summary receiver operating characteristic model to network meta-analysis of diagnostic tests to simultaneously compare multiple tests within a missing data framework. The method accounts for correlations between multiple tests and for heterogeneity between studies. It also allows different studies to include different subsets of diagnostic tests and provides flexibility in the choice of summary statistics. The model is evaluated using simulations and illustrated using real data on tests for deep vein thrombosis, with sensitivity analyses. Supplementary materials for this article are available online.</description><subject>Applications and Case Studies</subject><subject>Bayesian analysis</subject><subject>Bayesian hierarchical model</subject><subject>Bayesian theory</subject><subject>Computer simulation</subject><subject>Deep vein thrombosis</subject><subject>Diagnostic systems</subject><subject>diagnostic techniques</subject><subject>Diagnostic tests</subject><subject>equations</subject><subject>Flexibility</subject><subject>Meta-analysis</subject><subject>Missing data</subject><subject>Multiple tests comparison</subject><subject>Network meta-analysis</subject><subject>Randomization</subject><subject>Regression analysis</subject><subject>Sensitivity analysis</subject><subject>Statistical methods</subject><subject>Statistical tests</subject><subject>Statistics</subject><subject>Subsets</subject><subject>Thrombosis</subject><issn>0162-1459</issn><issn>1537-274X</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkltvEzEQhVcIREvhJ4AsISReNviy68sLagiXIrVUgiLxZs16J4nDZh3s3aL8exySVoUHhF_8MN8cnZk5RfGU0Qmjmr6iTHJW1WbCKdMTVinJhblXHLNaqJKr6tv94njHlDvoqHiU0ormp7R-WBwJppSqGD0uxil5A1tMHnpy5jFCdEvvoCNfxvUa4pZ8Rof-GiO53OTq4PsFmS0hghsw-jR4Ry5Cix2Zh0g-4fAzxO_kAgcopz102-QTCXPy1sOiD7_pK0xDelw8mEOX8MnhPym-vn93NTsrzy8_fJxNz0tXGz6UEhxIzSg2WiOVoKhGwU3TslaLGqjjSjKFIJysG90o3QgQIJUxSFXLUZwUr_e6m7FZY-uwHyJ0dhP9bjYbwNs_K71f2kW4tlJraiqaBV4eBGL4MWbrdu2Tw66DHsOYLBdaK1VrLf8DZaYyFacio8__QldhjHlfmeJGGlNV3GSq3lMuhpQizm99M2p3GbA3GbC7DNhDBnLfs7tD33bdHD0DL_bAKg0h3lXlgipb1ZzpWqrMne453-frriHftmvtANsuxHmE3vmURf_p5RfTjc1O</recordid><startdate>20190703</startdate><enddate>20190703</enddate><creator>Lian, Qinshu</creator><creator>Hodges, James S.</creator><creator>Chu, Haitao</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group, LLC</general><general>Taylor &amp; Francis Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20190703</creationdate><title>A Bayesian Hierarchical Summary Receiver Operating Characteristic Model for Network Meta-Analysis of Diagnostic Tests</title><author>Lian, Qinshu ; Hodges, James S. ; Chu, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-6aca6810eb88e06a708e329bd1d835a0c27617ea3c65b8b78b3a3a6799e07d2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications and Case Studies</topic><topic>Bayesian analysis</topic><topic>Bayesian hierarchical model</topic><topic>Bayesian theory</topic><topic>Computer simulation</topic><topic>Deep vein thrombosis</topic><topic>Diagnostic systems</topic><topic>diagnostic techniques</topic><topic>Diagnostic tests</topic><topic>equations</topic><topic>Flexibility</topic><topic>Meta-analysis</topic><topic>Missing data</topic><topic>Multiple tests comparison</topic><topic>Network meta-analysis</topic><topic>Randomization</topic><topic>Regression analysis</topic><topic>Sensitivity analysis</topic><topic>Statistical methods</topic><topic>Statistical tests</topic><topic>Statistics</topic><topic>Subsets</topic><topic>Thrombosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lian, Qinshu</creatorcontrib><creatorcontrib>Hodges, James S.</creatorcontrib><creatorcontrib>Chu, Haitao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lian, Qinshu</au><au>Hodges, James S.</au><au>Chu, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Hierarchical Summary Receiver Operating Characteristic Model for Network Meta-Analysis of Diagnostic Tests</atitle><jtitle>Journal of the American Statistical Association</jtitle><addtitle>J Am Stat Assoc</addtitle><date>2019-07-03</date><risdate>2019</risdate><volume>114</volume><issue>527</issue><spage>949</spage><epage>961</epage><pages>949-961</pages><issn>0162-1459</issn><issn>1537-274X</issn><eissn>1537-274X</eissn><abstract>In studies evaluating the accuracy of diagnostic tests, three designs are commonly used, crossover, randomized, and noncomparative. Existing methods for meta-analysis of diagnostic tests mainly consider the simple cases in which the reference test in all or none of the studies can be considered a gold standard test, and in which all studies use either a randomized or noncomparative design. The proliferation of diagnostic instruments and the diversity of study designs create a need for more general methods to combine studies that include or do not include a gold standard test and that use various designs. This article extends the Bayesian hierarchical summary receiver operating characteristic model to network meta-analysis of diagnostic tests to simultaneously compare multiple tests within a missing data framework. The method accounts for correlations between multiple tests and for heterogeneity between studies. It also allows different studies to include different subsets of diagnostic tests and provides flexibility in the choice of summary statistics. The model is evaluated using simulations and illustrated using real data on tests for deep vein thrombosis, with sensitivity analyses. Supplementary materials for this article are available online.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>31777410</pmid><doi>10.1080/01621459.2018.1476239</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2019-07, Vol.114 (527), p.949-961
issn 0162-1459
1537-274X
1537-274X
language eng
recordid cdi_proquest_miscellaneous_2388775886
source Taylor & Francis Journals Complete
subjects Applications and Case Studies
Bayesian analysis
Bayesian hierarchical model
Bayesian theory
Computer simulation
Deep vein thrombosis
Diagnostic systems
diagnostic techniques
Diagnostic tests
equations
Flexibility
Meta-analysis
Missing data
Multiple tests comparison
Network meta-analysis
Randomization
Regression analysis
Sensitivity analysis
Statistical methods
Statistical tests
Statistics
Subsets
Thrombosis
title A Bayesian Hierarchical Summary Receiver Operating Characteristic Model for Network Meta-Analysis of Diagnostic Tests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A14%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Hierarchical%20Summary%20Receiver%20Operating%20Characteristic%20Model%20for%20Network%20Meta-Analysis%20of%20Diagnostic%20Tests&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Lian,%20Qinshu&rft.date=2019-07-03&rft.volume=114&rft.issue=527&rft.spage=949&rft.epage=961&rft.pages=949-961&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2018.1476239&rft_dat=%3Cjstor_proqu%3E45218567%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296994429&rft_id=info:pmid/31777410&rft_jstor_id=45218567&rfr_iscdi=true