Integrating genomic features for non-invasive early lung cancer detection
Radiologic screening of high-risk adults reduces lung-cancer-related mortality 1 , 2 ; however, a small minority of eligible individuals undergo such screening in the United States 3 , 4 . The availability of blood-based tests could increase screening uptake. Here we introduce improvements to cancer...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2020-04, Vol.580 (7802), p.245-251 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 251 |
---|---|
container_issue | 7802 |
container_start_page | 245 |
container_title | Nature (London) |
container_volume | 580 |
creator | Chabon, Jacob J. Hamilton, Emily G. Kurtz, David M. Esfahani, Mohammad S. Moding, Everett J. Stehr, Henning Schroers-Martin, Joseph Nabet, Barzin Y. Chen, Binbin Chaudhuri, Aadel A. Liu, Chih Long Hui, Angela B. Jin, Michael C. Azad, Tej D. Almanza, Diego Jeon, Young-Jun Nesselbush, Monica C. Co Ting Keh, Lyron Bonilla, Rene F. Yoo, Christopher H. Ko, Ryan B. Chen, Emily L. Merriott, David J. Massion, Pierre P. Mansfield, Aaron S. Jen, Jin Ren, Hong Z. Lin, Steven H. Costantino, Christina L. Burr, Risa Tibshirani, Robert Gambhir, Sanjiv S. Berry, Gerald J. Jensen, Kristin C. West, Robert B. Neal, Joel W. Wakelee, Heather A. Loo, Billy W. Kunder, Christian A. Leung, Ann N. Lui, Natalie S. Berry, Mark F. Shrager, Joseph B. Nair, Viswam S. Haber, Daniel A. Sequist, Lecia V. Alizadeh, Ash A. Diehn, Maximilian |
description | Radiologic screening of high-risk adults reduces lung-cancer-related mortality
1
,
2
; however, a small minority of eligible individuals undergo such screening in the United States
3
,
4
. The availability of blood-based tests could increase screening uptake. Here we introduce improvements to cancer personalized profiling by deep sequencing (CAPP-Seq)
5
, a method for the analysis of circulating tumour DNA (ctDNA), to better facilitate screening applications. We show that, although levels are very low in early-stage lung cancers, ctDNA is present prior to treatment in most patients and its presence is strongly prognostic. We also find that the majority of somatic mutations in the cell-free DNA (cfDNA) of patients with lung cancer and of risk-matched controls reflect clonal haematopoiesis and are non-recurrent. Compared with tumour-derived mutations, clonal haematopoiesis mutations occur on longer cfDNA fragments and lack mutational signatures that are associated with tobacco smoking. Integrating these findings with other molecular features, we develop and prospectively validate a machine-learning method termed ‘lung cancer likelihood in plasma’ (Lung-CLiP), which can robustly discriminate early-stage lung cancer patients from risk-matched controls. This approach achieves performance similar to that of tumour-informed ctDNA detection and enables tuning of assay specificity in order to facilitate distinct clinical applications. Our findings establish the potential of cfDNA for lung cancer screening and highlight the importance of risk-matching cases and controls in cfDNA-based screening studies.
Circulating tumour DNA in blood is analysed to identify genomic features that distinguish early-stage lung cancer patients from risk-matched controls, and these are integrated into a machine-learning method for blood-based lung cancer screening. |
doi_str_mv | 10.1038/s41586-020-2140-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2388004783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A619849955</galeid><sourcerecordid>A619849955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c647t-36ac2ad08e7a56ec862212a8e6e2dfd5fd4009bbd5f26856af0a969074c0a803</originalsourceid><addsrcrecordid>eNp10kFrHCEUB3ApLc0m7QfopQztpT2YPh3HcY4htOlCINDmLq7zZjDM6kad0Hz7umyadMMGD4r-fMjzT8gHBqcMavUtCdYoSYED5UwAhVdkwUQrqZCqfU0WAFxRULU8Iscp3QBAw1rxlhzVnMuuFnxBlkufcYwmOz9WI_qwdrYa0OQ5YqqGECsfPHX-ziR3hxWaON1X01ywNd5irHrMaLML_h15M5gp4fuH-YRc__h-ff6TXl5dLM_PLqmVos20lsZy04PC1jQSrZKcM24USuT90DdDLwC61aqsuFSNNAOYTnbQCgtGQX1CvuzKbmK4nTFlvXbJ4jQZj2FOmtdKAYhW1YV-fkZvwhx9eVxRHcimFh08qdFMqJ0fQo7GbovqM8k6JbquaYqiB1RpGEYzBY-DK9t7_tMBbzfuVv-PTg-gMnos33Cw6te9C8Vk_JNHM6ekl79_7Vu2szaGlCIOehPd2sR7zUBv46N38dElPnobH73txceHjs2rNfaPN_7lpQC-A6kc-RHjU0tfrvoXv_7LTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390653490</pqid></control><display><type>article</type><title>Integrating genomic features for non-invasive early lung cancer detection</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Chabon, Jacob J. ; Hamilton, Emily G. ; Kurtz, David M. ; Esfahani, Mohammad S. ; Moding, Everett J. ; Stehr, Henning ; Schroers-Martin, Joseph ; Nabet, Barzin Y. ; Chen, Binbin ; Chaudhuri, Aadel A. ; Liu, Chih Long ; Hui, Angela B. ; Jin, Michael C. ; Azad, Tej D. ; Almanza, Diego ; Jeon, Young-Jun ; Nesselbush, Monica C. ; Co Ting Keh, Lyron ; Bonilla, Rene F. ; Yoo, Christopher H. ; Ko, Ryan B. ; Chen, Emily L. ; Merriott, David J. ; Massion, Pierre P. ; Mansfield, Aaron S. ; Jen, Jin ; Ren, Hong Z. ; Lin, Steven H. ; Costantino, Christina L. ; Burr, Risa ; Tibshirani, Robert ; Gambhir, Sanjiv S. ; Berry, Gerald J. ; Jensen, Kristin C. ; West, Robert B. ; Neal, Joel W. ; Wakelee, Heather A. ; Loo, Billy W. ; Kunder, Christian A. ; Leung, Ann N. ; Lui, Natalie S. ; Berry, Mark F. ; Shrager, Joseph B. ; Nair, Viswam S. ; Haber, Daniel A. ; Sequist, Lecia V. ; Alizadeh, Ash A. ; Diehn, Maximilian</creator><creatorcontrib>Chabon, Jacob J. ; Hamilton, Emily G. ; Kurtz, David M. ; Esfahani, Mohammad S. ; Moding, Everett J. ; Stehr, Henning ; Schroers-Martin, Joseph ; Nabet, Barzin Y. ; Chen, Binbin ; Chaudhuri, Aadel A. ; Liu, Chih Long ; Hui, Angela B. ; Jin, Michael C. ; Azad, Tej D. ; Almanza, Diego ; Jeon, Young-Jun ; Nesselbush, Monica C. ; Co Ting Keh, Lyron ; Bonilla, Rene F. ; Yoo, Christopher H. ; Ko, Ryan B. ; Chen, Emily L. ; Merriott, David J. ; Massion, Pierre P. ; Mansfield, Aaron S. ; Jen, Jin ; Ren, Hong Z. ; Lin, Steven H. ; Costantino, Christina L. ; Burr, Risa ; Tibshirani, Robert ; Gambhir, Sanjiv S. ; Berry, Gerald J. ; Jensen, Kristin C. ; West, Robert B. ; Neal, Joel W. ; Wakelee, Heather A. ; Loo, Billy W. ; Kunder, Christian A. ; Leung, Ann N. ; Lui, Natalie S. ; Berry, Mark F. ; Shrager, Joseph B. ; Nair, Viswam S. ; Haber, Daniel A. ; Sequist, Lecia V. ; Alizadeh, Ash A. ; Diehn, Maximilian</creatorcontrib><description>Radiologic screening of high-risk adults reduces lung-cancer-related mortality
1
,
2
; however, a small minority of eligible individuals undergo such screening in the United States
3
,
4
. The availability of blood-based tests could increase screening uptake. Here we introduce improvements to cancer personalized profiling by deep sequencing (CAPP-Seq)
5
, a method for the analysis of circulating tumour DNA (ctDNA), to better facilitate screening applications. We show that, although levels are very low in early-stage lung cancers, ctDNA is present prior to treatment in most patients and its presence is strongly prognostic. We also find that the majority of somatic mutations in the cell-free DNA (cfDNA) of patients with lung cancer and of risk-matched controls reflect clonal haematopoiesis and are non-recurrent. Compared with tumour-derived mutations, clonal haematopoiesis mutations occur on longer cfDNA fragments and lack mutational signatures that are associated with tobacco smoking. Integrating these findings with other molecular features, we develop and prospectively validate a machine-learning method termed ‘lung cancer likelihood in plasma’ (Lung-CLiP), which can robustly discriminate early-stage lung cancer patients from risk-matched controls. This approach achieves performance similar to that of tumour-informed ctDNA detection and enables tuning of assay specificity in order to facilitate distinct clinical applications. Our findings establish the potential of cfDNA for lung cancer screening and highlight the importance of risk-matching cases and controls in cfDNA-based screening studies.
Circulating tumour DNA in blood is analysed to identify genomic features that distinguish early-stage lung cancer patients from risk-matched controls, and these are integrated into a machine-learning method for blood-based lung cancer screening.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2140-0</identifier><identifier>PMID: 32269342</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45 ; 45/23 ; 631/67/1612/1350 ; 631/67/2322 ; 631/67/69 ; Analysis ; Blood & organ donations ; Cancer ; Cancer screening ; Circulating Tumor DNA - analysis ; Circulating Tumor DNA - genetics ; Cohort Studies ; Deoxyribonucleic acid ; Depth profiling ; Diagnosis ; DNA ; DNA sequencing ; Early Detection of Cancer - methods ; Female ; Genetic aspects ; Genome, Human - genetics ; Hematopoiesis - genetics ; Humanities and Social Sciences ; Humans ; Learning algorithms ; Lung - metabolism ; Lung - pathology ; Lung cancer ; Lung diseases ; Lung Neoplasms - blood ; Lung Neoplasms - diagnosis ; Lung Neoplasms - genetics ; Lung Neoplasms - pathology ; Machine learning ; Male ; Medical screening ; Metastasis ; Methods ; Middle Aged ; multidisciplinary ; Mutation ; Nucleotide sequence ; Patients ; Population ; Reproducibility of Results ; Risk management ; Science ; Science (multidisciplinary) ; Technology application ; Therapeutic applications ; Tobacco ; Tobacco smoking ; Tumors</subject><ispartof>Nature (London), 2020-04, Vol.580 (7802), p.245-251</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 9, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c647t-36ac2ad08e7a56ec862212a8e6e2dfd5fd4009bbd5f26856af0a969074c0a803</citedby><cites>FETCH-LOGICAL-c647t-36ac2ad08e7a56ec862212a8e6e2dfd5fd4009bbd5f26856af0a969074c0a803</cites><orcidid>0000-0002-6382-4651 ; 0000-0002-9483-6903 ; 0000-0003-2032-0581 ; 0000-0003-3115-3061 ; 0000-0001-7955-6244 ; 0000-0002-4525-3533 ; 0000-0001-6376-8154 ; 0000-0003-2132-8956 ; 0000-0002-2123-9702 ; 0000-0002-5153-5625 ; 0000-0002-4824-3533 ; 0000-0002-2711-7554 ; 0000-0002-2521-0544 ; 0000-0003-2973-2718 ; 0000-0002-8965-6991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-2140-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-2140-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32269342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chabon, Jacob J.</creatorcontrib><creatorcontrib>Hamilton, Emily G.</creatorcontrib><creatorcontrib>Kurtz, David M.</creatorcontrib><creatorcontrib>Esfahani, Mohammad S.</creatorcontrib><creatorcontrib>Moding, Everett J.</creatorcontrib><creatorcontrib>Stehr, Henning</creatorcontrib><creatorcontrib>Schroers-Martin, Joseph</creatorcontrib><creatorcontrib>Nabet, Barzin Y.</creatorcontrib><creatorcontrib>Chen, Binbin</creatorcontrib><creatorcontrib>Chaudhuri, Aadel A.</creatorcontrib><creatorcontrib>Liu, Chih Long</creatorcontrib><creatorcontrib>Hui, Angela B.</creatorcontrib><creatorcontrib>Jin, Michael C.</creatorcontrib><creatorcontrib>Azad, Tej D.</creatorcontrib><creatorcontrib>Almanza, Diego</creatorcontrib><creatorcontrib>Jeon, Young-Jun</creatorcontrib><creatorcontrib>Nesselbush, Monica C.</creatorcontrib><creatorcontrib>Co Ting Keh, Lyron</creatorcontrib><creatorcontrib>Bonilla, Rene F.</creatorcontrib><creatorcontrib>Yoo, Christopher H.</creatorcontrib><creatorcontrib>Ko, Ryan B.</creatorcontrib><creatorcontrib>Chen, Emily L.</creatorcontrib><creatorcontrib>Merriott, David J.</creatorcontrib><creatorcontrib>Massion, Pierre P.</creatorcontrib><creatorcontrib>Mansfield, Aaron S.</creatorcontrib><creatorcontrib>Jen, Jin</creatorcontrib><creatorcontrib>Ren, Hong Z.</creatorcontrib><creatorcontrib>Lin, Steven H.</creatorcontrib><creatorcontrib>Costantino, Christina L.</creatorcontrib><creatorcontrib>Burr, Risa</creatorcontrib><creatorcontrib>Tibshirani, Robert</creatorcontrib><creatorcontrib>Gambhir, Sanjiv S.</creatorcontrib><creatorcontrib>Berry, Gerald J.</creatorcontrib><creatorcontrib>Jensen, Kristin C.</creatorcontrib><creatorcontrib>West, Robert B.</creatorcontrib><creatorcontrib>Neal, Joel W.</creatorcontrib><creatorcontrib>Wakelee, Heather A.</creatorcontrib><creatorcontrib>Loo, Billy W.</creatorcontrib><creatorcontrib>Kunder, Christian A.</creatorcontrib><creatorcontrib>Leung, Ann N.</creatorcontrib><creatorcontrib>Lui, Natalie S.</creatorcontrib><creatorcontrib>Berry, Mark F.</creatorcontrib><creatorcontrib>Shrager, Joseph B.</creatorcontrib><creatorcontrib>Nair, Viswam S.</creatorcontrib><creatorcontrib>Haber, Daniel A.</creatorcontrib><creatorcontrib>Sequist, Lecia V.</creatorcontrib><creatorcontrib>Alizadeh, Ash A.</creatorcontrib><creatorcontrib>Diehn, Maximilian</creatorcontrib><title>Integrating genomic features for non-invasive early lung cancer detection</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Radiologic screening of high-risk adults reduces lung-cancer-related mortality
1
,
2
; however, a small minority of eligible individuals undergo such screening in the United States
3
,
4
. The availability of blood-based tests could increase screening uptake. Here we introduce improvements to cancer personalized profiling by deep sequencing (CAPP-Seq)
5
, a method for the analysis of circulating tumour DNA (ctDNA), to better facilitate screening applications. We show that, although levels are very low in early-stage lung cancers, ctDNA is present prior to treatment in most patients and its presence is strongly prognostic. We also find that the majority of somatic mutations in the cell-free DNA (cfDNA) of patients with lung cancer and of risk-matched controls reflect clonal haematopoiesis and are non-recurrent. Compared with tumour-derived mutations, clonal haematopoiesis mutations occur on longer cfDNA fragments and lack mutational signatures that are associated with tobacco smoking. Integrating these findings with other molecular features, we develop and prospectively validate a machine-learning method termed ‘lung cancer likelihood in plasma’ (Lung-CLiP), which can robustly discriminate early-stage lung cancer patients from risk-matched controls. This approach achieves performance similar to that of tumour-informed ctDNA detection and enables tuning of assay specificity in order to facilitate distinct clinical applications. Our findings establish the potential of cfDNA for lung cancer screening and highlight the importance of risk-matching cases and controls in cfDNA-based screening studies.
Circulating tumour DNA in blood is analysed to identify genomic features that distinguish early-stage lung cancer patients from risk-matched controls, and these are integrated into a machine-learning method for blood-based lung cancer screening.</description><subject>45</subject><subject>45/23</subject><subject>631/67/1612/1350</subject><subject>631/67/2322</subject><subject>631/67/69</subject><subject>Analysis</subject><subject>Blood & organ donations</subject><subject>Cancer</subject><subject>Cancer screening</subject><subject>Circulating Tumor DNA - analysis</subject><subject>Circulating Tumor DNA - genetics</subject><subject>Cohort Studies</subject><subject>Deoxyribonucleic acid</subject><subject>Depth profiling</subject><subject>Diagnosis</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Early Detection of Cancer - methods</subject><subject>Female</subject><subject>Genetic aspects</subject><subject>Genome, Human - genetics</subject><subject>Hematopoiesis - genetics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Lung - metabolism</subject><subject>Lung - pathology</subject><subject>Lung cancer</subject><subject>Lung diseases</subject><subject>Lung Neoplasms - blood</subject><subject>Lung Neoplasms - diagnosis</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - pathology</subject><subject>Machine learning</subject><subject>Male</subject><subject>Medical screening</subject><subject>Metastasis</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Nucleotide sequence</subject><subject>Patients</subject><subject>Population</subject><subject>Reproducibility of Results</subject><subject>Risk management</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Technology application</subject><subject>Therapeutic applications</subject><subject>Tobacco</subject><subject>Tobacco smoking</subject><subject>Tumors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10kFrHCEUB3ApLc0m7QfopQztpT2YPh3HcY4htOlCINDmLq7zZjDM6kad0Hz7umyadMMGD4r-fMjzT8gHBqcMavUtCdYoSYED5UwAhVdkwUQrqZCqfU0WAFxRULU8Iscp3QBAw1rxlhzVnMuuFnxBlkufcYwmOz9WI_qwdrYa0OQ5YqqGECsfPHX-ziR3hxWaON1X01ywNd5irHrMaLML_h15M5gp4fuH-YRc__h-ff6TXl5dLM_PLqmVos20lsZy04PC1jQSrZKcM24USuT90DdDLwC61aqsuFSNNAOYTnbQCgtGQX1CvuzKbmK4nTFlvXbJ4jQZj2FOmtdKAYhW1YV-fkZvwhx9eVxRHcimFh08qdFMqJ0fQo7GbovqM8k6JbquaYqiB1RpGEYzBY-DK9t7_tMBbzfuVv-PTg-gMnos33Cw6te9C8Vk_JNHM6ekl79_7Vu2szaGlCIOehPd2sR7zUBv46N38dElPnobH73txceHjs2rNfaPN_7lpQC-A6kc-RHjU0tfrvoXv_7LTA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Chabon, Jacob J.</creator><creator>Hamilton, Emily G.</creator><creator>Kurtz, David M.</creator><creator>Esfahani, Mohammad S.</creator><creator>Moding, Everett J.</creator><creator>Stehr, Henning</creator><creator>Schroers-Martin, Joseph</creator><creator>Nabet, Barzin Y.</creator><creator>Chen, Binbin</creator><creator>Chaudhuri, Aadel A.</creator><creator>Liu, Chih Long</creator><creator>Hui, Angela B.</creator><creator>Jin, Michael C.</creator><creator>Azad, Tej D.</creator><creator>Almanza, Diego</creator><creator>Jeon, Young-Jun</creator><creator>Nesselbush, Monica C.</creator><creator>Co Ting Keh, Lyron</creator><creator>Bonilla, Rene F.</creator><creator>Yoo, Christopher H.</creator><creator>Ko, Ryan B.</creator><creator>Chen, Emily L.</creator><creator>Merriott, David J.</creator><creator>Massion, Pierre P.</creator><creator>Mansfield, Aaron S.</creator><creator>Jen, Jin</creator><creator>Ren, Hong Z.</creator><creator>Lin, Steven H.</creator><creator>Costantino, Christina L.</creator><creator>Burr, Risa</creator><creator>Tibshirani, Robert</creator><creator>Gambhir, Sanjiv S.</creator><creator>Berry, Gerald J.</creator><creator>Jensen, Kristin C.</creator><creator>West, Robert B.</creator><creator>Neal, Joel W.</creator><creator>Wakelee, Heather A.</creator><creator>Loo, Billy W.</creator><creator>Kunder, Christian A.</creator><creator>Leung, Ann N.</creator><creator>Lui, Natalie S.</creator><creator>Berry, Mark F.</creator><creator>Shrager, Joseph B.</creator><creator>Nair, Viswam S.</creator><creator>Haber, Daniel A.</creator><creator>Sequist, Lecia V.</creator><creator>Alizadeh, Ash A.</creator><creator>Diehn, Maximilian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6382-4651</orcidid><orcidid>https://orcid.org/0000-0002-9483-6903</orcidid><orcidid>https://orcid.org/0000-0003-2032-0581</orcidid><orcidid>https://orcid.org/0000-0003-3115-3061</orcidid><orcidid>https://orcid.org/0000-0001-7955-6244</orcidid><orcidid>https://orcid.org/0000-0002-4525-3533</orcidid><orcidid>https://orcid.org/0000-0001-6376-8154</orcidid><orcidid>https://orcid.org/0000-0003-2132-8956</orcidid><orcidid>https://orcid.org/0000-0002-2123-9702</orcidid><orcidid>https://orcid.org/0000-0002-5153-5625</orcidid><orcidid>https://orcid.org/0000-0002-4824-3533</orcidid><orcidid>https://orcid.org/0000-0002-2711-7554</orcidid><orcidid>https://orcid.org/0000-0002-2521-0544</orcidid><orcidid>https://orcid.org/0000-0003-2973-2718</orcidid><orcidid>https://orcid.org/0000-0002-8965-6991</orcidid></search><sort><creationdate>20200401</creationdate><title>Integrating genomic features for non-invasive early lung cancer detection</title><author>Chabon, Jacob J. ; Hamilton, Emily G. ; Kurtz, David M. ; Esfahani, Mohammad S. ; Moding, Everett J. ; Stehr, Henning ; Schroers-Martin, Joseph ; Nabet, Barzin Y. ; Chen, Binbin ; Chaudhuri, Aadel A. ; Liu, Chih Long ; Hui, Angela B. ; Jin, Michael C. ; Azad, Tej D. ; Almanza, Diego ; Jeon, Young-Jun ; Nesselbush, Monica C. ; Co Ting Keh, Lyron ; Bonilla, Rene F. ; Yoo, Christopher H. ; Ko, Ryan B. ; Chen, Emily L. ; Merriott, David J. ; Massion, Pierre P. ; Mansfield, Aaron S. ; Jen, Jin ; Ren, Hong Z. ; Lin, Steven H. ; Costantino, Christina L. ; Burr, Risa ; Tibshirani, Robert ; Gambhir, Sanjiv S. ; Berry, Gerald J. ; Jensen, Kristin C. ; West, Robert B. ; Neal, Joel W. ; Wakelee, Heather A. ; Loo, Billy W. ; Kunder, Christian A. ; Leung, Ann N. ; Lui, Natalie S. ; Berry, Mark F. ; Shrager, Joseph B. ; Nair, Viswam S. ; Haber, Daniel A. ; Sequist, Lecia V. ; Alizadeh, Ash A. ; Diehn, Maximilian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c647t-36ac2ad08e7a56ec862212a8e6e2dfd5fd4009bbd5f26856af0a969074c0a803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>45</topic><topic>45/23</topic><topic>631/67/1612/1350</topic><topic>631/67/2322</topic><topic>631/67/69</topic><topic>Analysis</topic><topic>Blood & organ donations</topic><topic>Cancer</topic><topic>Cancer screening</topic><topic>Circulating Tumor DNA - analysis</topic><topic>Circulating Tumor DNA - genetics</topic><topic>Cohort Studies</topic><topic>Deoxyribonucleic acid</topic><topic>Depth profiling</topic><topic>Diagnosis</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Early Detection of Cancer - methods</topic><topic>Female</topic><topic>Genetic aspects</topic><topic>Genome, Human - genetics</topic><topic>Hematopoiesis - genetics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Lung - metabolism</topic><topic>Lung - pathology</topic><topic>Lung cancer</topic><topic>Lung diseases</topic><topic>Lung Neoplasms - blood</topic><topic>Lung Neoplasms - diagnosis</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - pathology</topic><topic>Machine learning</topic><topic>Male</topic><topic>Medical screening</topic><topic>Metastasis</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Nucleotide sequence</topic><topic>Patients</topic><topic>Population</topic><topic>Reproducibility of Results</topic><topic>Risk management</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Technology application</topic><topic>Therapeutic applications</topic><topic>Tobacco</topic><topic>Tobacco smoking</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chabon, Jacob J.</creatorcontrib><creatorcontrib>Hamilton, Emily G.</creatorcontrib><creatorcontrib>Kurtz, David M.</creatorcontrib><creatorcontrib>Esfahani, Mohammad S.</creatorcontrib><creatorcontrib>Moding, Everett J.</creatorcontrib><creatorcontrib>Stehr, Henning</creatorcontrib><creatorcontrib>Schroers-Martin, Joseph</creatorcontrib><creatorcontrib>Nabet, Barzin Y.</creatorcontrib><creatorcontrib>Chen, Binbin</creatorcontrib><creatorcontrib>Chaudhuri, Aadel A.</creatorcontrib><creatorcontrib>Liu, Chih Long</creatorcontrib><creatorcontrib>Hui, Angela B.</creatorcontrib><creatorcontrib>Jin, Michael C.</creatorcontrib><creatorcontrib>Azad, Tej D.</creatorcontrib><creatorcontrib>Almanza, Diego</creatorcontrib><creatorcontrib>Jeon, Young-Jun</creatorcontrib><creatorcontrib>Nesselbush, Monica C.</creatorcontrib><creatorcontrib>Co Ting Keh, Lyron</creatorcontrib><creatorcontrib>Bonilla, Rene F.</creatorcontrib><creatorcontrib>Yoo, Christopher H.</creatorcontrib><creatorcontrib>Ko, Ryan B.</creatorcontrib><creatorcontrib>Chen, Emily L.</creatorcontrib><creatorcontrib>Merriott, David J.</creatorcontrib><creatorcontrib>Massion, Pierre P.</creatorcontrib><creatorcontrib>Mansfield, Aaron S.</creatorcontrib><creatorcontrib>Jen, Jin</creatorcontrib><creatorcontrib>Ren, Hong Z.</creatorcontrib><creatorcontrib>Lin, Steven H.</creatorcontrib><creatorcontrib>Costantino, Christina L.</creatorcontrib><creatorcontrib>Burr, Risa</creatorcontrib><creatorcontrib>Tibshirani, Robert</creatorcontrib><creatorcontrib>Gambhir, Sanjiv S.</creatorcontrib><creatorcontrib>Berry, Gerald J.</creatorcontrib><creatorcontrib>Jensen, Kristin C.</creatorcontrib><creatorcontrib>West, Robert B.</creatorcontrib><creatorcontrib>Neal, Joel W.</creatorcontrib><creatorcontrib>Wakelee, Heather A.</creatorcontrib><creatorcontrib>Loo, Billy W.</creatorcontrib><creatorcontrib>Kunder, Christian A.</creatorcontrib><creatorcontrib>Leung, Ann N.</creatorcontrib><creatorcontrib>Lui, Natalie S.</creatorcontrib><creatorcontrib>Berry, Mark F.</creatorcontrib><creatorcontrib>Shrager, Joseph B.</creatorcontrib><creatorcontrib>Nair, Viswam S.</creatorcontrib><creatorcontrib>Haber, Daniel A.</creatorcontrib><creatorcontrib>Sequist, Lecia V.</creatorcontrib><creatorcontrib>Alizadeh, Ash A.</creatorcontrib><creatorcontrib>Diehn, Maximilian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chabon, Jacob J.</au><au>Hamilton, Emily G.</au><au>Kurtz, David M.</au><au>Esfahani, Mohammad S.</au><au>Moding, Everett J.</au><au>Stehr, Henning</au><au>Schroers-Martin, Joseph</au><au>Nabet, Barzin Y.</au><au>Chen, Binbin</au><au>Chaudhuri, Aadel A.</au><au>Liu, Chih Long</au><au>Hui, Angela B.</au><au>Jin, Michael C.</au><au>Azad, Tej D.</au><au>Almanza, Diego</au><au>Jeon, Young-Jun</au><au>Nesselbush, Monica C.</au><au>Co Ting Keh, Lyron</au><au>Bonilla, Rene F.</au><au>Yoo, Christopher H.</au><au>Ko, Ryan B.</au><au>Chen, Emily L.</au><au>Merriott, David J.</au><au>Massion, Pierre P.</au><au>Mansfield, Aaron S.</au><au>Jen, Jin</au><au>Ren, Hong Z.</au><au>Lin, Steven H.</au><au>Costantino, Christina L.</au><au>Burr, Risa</au><au>Tibshirani, Robert</au><au>Gambhir, Sanjiv S.</au><au>Berry, Gerald J.</au><au>Jensen, Kristin C.</au><au>West, Robert B.</au><au>Neal, Joel W.</au><au>Wakelee, Heather A.</au><au>Loo, Billy W.</au><au>Kunder, Christian A.</au><au>Leung, Ann N.</au><au>Lui, Natalie S.</au><au>Berry, Mark F.</au><au>Shrager, Joseph B.</au><au>Nair, Viswam S.</au><au>Haber, Daniel A.</au><au>Sequist, Lecia V.</au><au>Alizadeh, Ash A.</au><au>Diehn, Maximilian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating genomic features for non-invasive early lung cancer detection</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>580</volume><issue>7802</issue><spage>245</spage><epage>251</epage><pages>245-251</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Radiologic screening of high-risk adults reduces lung-cancer-related mortality
1
,
2
; however, a small minority of eligible individuals undergo such screening in the United States
3
,
4
. The availability of blood-based tests could increase screening uptake. Here we introduce improvements to cancer personalized profiling by deep sequencing (CAPP-Seq)
5
, a method for the analysis of circulating tumour DNA (ctDNA), to better facilitate screening applications. We show that, although levels are very low in early-stage lung cancers, ctDNA is present prior to treatment in most patients and its presence is strongly prognostic. We also find that the majority of somatic mutations in the cell-free DNA (cfDNA) of patients with lung cancer and of risk-matched controls reflect clonal haematopoiesis and are non-recurrent. Compared with tumour-derived mutations, clonal haematopoiesis mutations occur on longer cfDNA fragments and lack mutational signatures that are associated with tobacco smoking. Integrating these findings with other molecular features, we develop and prospectively validate a machine-learning method termed ‘lung cancer likelihood in plasma’ (Lung-CLiP), which can robustly discriminate early-stage lung cancer patients from risk-matched controls. This approach achieves performance similar to that of tumour-informed ctDNA detection and enables tuning of assay specificity in order to facilitate distinct clinical applications. Our findings establish the potential of cfDNA for lung cancer screening and highlight the importance of risk-matching cases and controls in cfDNA-based screening studies.
Circulating tumour DNA in blood is analysed to identify genomic features that distinguish early-stage lung cancer patients from risk-matched controls, and these are integrated into a machine-learning method for blood-based lung cancer screening.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32269342</pmid><doi>10.1038/s41586-020-2140-0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6382-4651</orcidid><orcidid>https://orcid.org/0000-0002-9483-6903</orcidid><orcidid>https://orcid.org/0000-0003-2032-0581</orcidid><orcidid>https://orcid.org/0000-0003-3115-3061</orcidid><orcidid>https://orcid.org/0000-0001-7955-6244</orcidid><orcidid>https://orcid.org/0000-0002-4525-3533</orcidid><orcidid>https://orcid.org/0000-0001-6376-8154</orcidid><orcidid>https://orcid.org/0000-0003-2132-8956</orcidid><orcidid>https://orcid.org/0000-0002-2123-9702</orcidid><orcidid>https://orcid.org/0000-0002-5153-5625</orcidid><orcidid>https://orcid.org/0000-0002-4824-3533</orcidid><orcidid>https://orcid.org/0000-0002-2711-7554</orcidid><orcidid>https://orcid.org/0000-0002-2521-0544</orcidid><orcidid>https://orcid.org/0000-0003-2973-2718</orcidid><orcidid>https://orcid.org/0000-0002-8965-6991</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2020-04, Vol.580 (7802), p.245-251 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2388004783 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 45 45/23 631/67/1612/1350 631/67/2322 631/67/69 Analysis Blood & organ donations Cancer Cancer screening Circulating Tumor DNA - analysis Circulating Tumor DNA - genetics Cohort Studies Deoxyribonucleic acid Depth profiling Diagnosis DNA DNA sequencing Early Detection of Cancer - methods Female Genetic aspects Genome, Human - genetics Hematopoiesis - genetics Humanities and Social Sciences Humans Learning algorithms Lung - metabolism Lung - pathology Lung cancer Lung diseases Lung Neoplasms - blood Lung Neoplasms - diagnosis Lung Neoplasms - genetics Lung Neoplasms - pathology Machine learning Male Medical screening Metastasis Methods Middle Aged multidisciplinary Mutation Nucleotide sequence Patients Population Reproducibility of Results Risk management Science Science (multidisciplinary) Technology application Therapeutic applications Tobacco Tobacco smoking Tumors |
title | Integrating genomic features for non-invasive early lung cancer detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20genomic%20features%20for%20non-invasive%20early%20lung%20cancer%20detection&rft.jtitle=Nature%20(London)&rft.au=Chabon,%20Jacob%20J.&rft.date=2020-04-01&rft.volume=580&rft.issue=7802&rft.spage=245&rft.epage=251&rft.pages=245-251&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2140-0&rft_dat=%3Cgale_proqu%3EA619849955%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390653490&rft_id=info:pmid/32269342&rft_galeid=A619849955&rfr_iscdi=true |