Highly Efficient All‐Small‐Molecule Organic Solar Cells with Appropriate Active Layer Morphology by Side Chain Engineering of Donor Molecules and Thermal Annealing
It is very important to fine‐tune the nanoscale morphology of donor:acceptor blend active layers for improving the photovoltaic performance of all‐small‐molecule organic solar cells (SM‐OSCs). In this work, two new small molecule donor materials are synthesized with different substituents on their t...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2020-05, Vol.32 (21), p.e1908373-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 21 |
container_start_page | e1908373 |
container_title | Advanced materials (Weinheim) |
container_volume | 32 |
creator | Qiu, Beibei Chen, Zeng Qin, Shucheng Yao, Jia Huang, Wenchao Meng, Lei Zhu, Haiming Yang, Yang (Michael) Zhang, Zhi‐Guo Li, Yongfang |
description | It is very important to fine‐tune the nanoscale morphology of donor:acceptor blend active layers for improving the photovoltaic performance of all‐small‐molecule organic solar cells (SM‐OSCs). In this work, two new small molecule donor materials are synthesized with different substituents on their thiophene conjugated side chains, including SM1‐S with alkylthio and SM1‐F with fluorine and alkyl substituents, and the previously reported donor molecule SM1 with an alkyl substituent, for investigating the effect of different conjugated side chains on the molecular aggregation and the photophysical, and photovoltaic properties of the donor molecules. As a result, an SM1‐F‐based SM‐OSC with Y6 as the acceptor, and with thermal annealing (TA) at 120 °C for 10 min, demonstrates the highest power conversion efficiency value of 14.07%, which is one of the best values for SM‐OSCs reported so far. Besides, these results also reveal that different side chains of the small molecules can distinctly influence the crystallinity characteristics and aggregation features, and TA treatment can effectively fine‐tune the phase separation to form suitable donor–acceptor interpenetrating networks, which is beneficial for exciton dissociation and charge transportation, leading to highly efficient photovoltaic performance.
The active layer morphology of all‐small‐molecule organic solar cells (SM‐OSCs) is tuned by side chain engineering of the donor molecules and thermal annealing (TA) of the devices. An SM‐OSC based on A–D–A‐structured SM1‐F with fluorine and alkyl substituents as the donor and Y6 as the acceptor, and with TA, demonstrates a high power conversion efficiency of 14.07%. |
doi_str_mv | 10.1002/adma.201908373 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2388003299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406264074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-fdcee000063584ffefeb16764862c87df49d6671f975331b46a4240b7e9e88923</originalsourceid><addsrcrecordid>eNqFkbGO1DAURS0EYoeFlhJZoqHJ4NiOE5fR7MAizWiLWerISZ4Trxx7cBJW6fgE_oL_4kvwMMsi0VC95vj43XcRep2SdUoIfa_aQa0pSSUpWM6eoFWa0TThRGZP0YpIliVS8OICvRjHO0KIFEQ8RxeM0pxkPFuhH9em6-2Ct1qbxoCbcGntz2_fD4P6PffeQjNbwDehU840-OCtCngD1o743kw9Lo_H4I_BqAlw2UzmK-CdWiDgvQ_H3lvfLbhe8MG0gDe9Mg5vXWccQDCuw17jK-_8iT5_NGLlWnzbQ4gb4NI5UDaCL9EzrewIrx7mJfr8YXu7uU52Nx8_bcpd0sT4LNFtAxBzEsGygmsNGupU5PEEgjZF3mouWyHyVMs8YyytuVCcclLnIKEoJGWX6N3ZG0N9mWGcqsGMTUyrHPh5rCgrCkIYlTKib_9B7_wcXNyuikpBBSc5j9T6TDXBj2MAXcVbDSosVUqqU4XVqcLqscL44M2Ddq4HaB_xP51FQJ6Be2Nh-Y-uKq_25V_5L8Umqs0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406264074</pqid></control><display><type>article</type><title>Highly Efficient All‐Small‐Molecule Organic Solar Cells with Appropriate Active Layer Morphology by Side Chain Engineering of Donor Molecules and Thermal Annealing</title><source>Access via Wiley Online Library</source><creator>Qiu, Beibei ; Chen, Zeng ; Qin, Shucheng ; Yao, Jia ; Huang, Wenchao ; Meng, Lei ; Zhu, Haiming ; Yang, Yang (Michael) ; Zhang, Zhi‐Guo ; Li, Yongfang</creator><creatorcontrib>Qiu, Beibei ; Chen, Zeng ; Qin, Shucheng ; Yao, Jia ; Huang, Wenchao ; Meng, Lei ; Zhu, Haiming ; Yang, Yang (Michael) ; Zhang, Zhi‐Guo ; Li, Yongfang</creatorcontrib><description>It is very important to fine‐tune the nanoscale morphology of donor:acceptor blend active layers for improving the photovoltaic performance of all‐small‐molecule organic solar cells (SM‐OSCs). In this work, two new small molecule donor materials are synthesized with different substituents on their thiophene conjugated side chains, including SM1‐S with alkylthio and SM1‐F with fluorine and alkyl substituents, and the previously reported donor molecule SM1 with an alkyl substituent, for investigating the effect of different conjugated side chains on the molecular aggregation and the photophysical, and photovoltaic properties of the donor molecules. As a result, an SM1‐F‐based SM‐OSC with Y6 as the acceptor, and with thermal annealing (TA) at 120 °C for 10 min, demonstrates the highest power conversion efficiency value of 14.07%, which is one of the best values for SM‐OSCs reported so far. Besides, these results also reveal that different side chains of the small molecules can distinctly influence the crystallinity characteristics and aggregation features, and TA treatment can effectively fine‐tune the phase separation to form suitable donor–acceptor interpenetrating networks, which is beneficial for exciton dissociation and charge transportation, leading to highly efficient photovoltaic performance.
The active layer morphology of all‐small‐molecule organic solar cells (SM‐OSCs) is tuned by side chain engineering of the donor molecules and thermal annealing (TA) of the devices. An SM‐OSC based on A–D–A‐structured SM1‐F with fluorine and alkyl substituents as the donor and Y6 as the acceptor, and with TA, demonstrates a high power conversion efficiency of 14.07%.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201908373</identifier><identifier>PMID: 32270545</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Agglomeration ; all‐small‐molecule organic solar cells ; Annealing ; Chains ; Chemical synthesis ; Donor materials ; Energy conversion efficiency ; Excitons ; Fluorine ; Interpenetrating networks ; Materials science ; Molecular chains ; Morphology ; Phase separation ; Photovoltaic cells ; side‐chain engineering ; small molecule donor materials ; Solar cells ; thermal annealing</subject><ispartof>Advanced materials (Weinheim), 2020-05, Vol.32 (21), p.e1908373-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-fdcee000063584ffefeb16764862c87df49d6671f975331b46a4240b7e9e88923</citedby><cites>FETCH-LOGICAL-c3733-fdcee000063584ffefeb16764862c87df49d6671f975331b46a4240b7e9e88923</cites><orcidid>0000-0002-2565-2748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201908373$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201908373$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32270545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Beibei</creatorcontrib><creatorcontrib>Chen, Zeng</creatorcontrib><creatorcontrib>Qin, Shucheng</creatorcontrib><creatorcontrib>Yao, Jia</creatorcontrib><creatorcontrib>Huang, Wenchao</creatorcontrib><creatorcontrib>Meng, Lei</creatorcontrib><creatorcontrib>Zhu, Haiming</creatorcontrib><creatorcontrib>Yang, Yang (Michael)</creatorcontrib><creatorcontrib>Zhang, Zhi‐Guo</creatorcontrib><creatorcontrib>Li, Yongfang</creatorcontrib><title>Highly Efficient All‐Small‐Molecule Organic Solar Cells with Appropriate Active Layer Morphology by Side Chain Engineering of Donor Molecules and Thermal Annealing</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>It is very important to fine‐tune the nanoscale morphology of donor:acceptor blend active layers for improving the photovoltaic performance of all‐small‐molecule organic solar cells (SM‐OSCs). In this work, two new small molecule donor materials are synthesized with different substituents on their thiophene conjugated side chains, including SM1‐S with alkylthio and SM1‐F with fluorine and alkyl substituents, and the previously reported donor molecule SM1 with an alkyl substituent, for investigating the effect of different conjugated side chains on the molecular aggregation and the photophysical, and photovoltaic properties of the donor molecules. As a result, an SM1‐F‐based SM‐OSC with Y6 as the acceptor, and with thermal annealing (TA) at 120 °C for 10 min, demonstrates the highest power conversion efficiency value of 14.07%, which is one of the best values for SM‐OSCs reported so far. Besides, these results also reveal that different side chains of the small molecules can distinctly influence the crystallinity characteristics and aggregation features, and TA treatment can effectively fine‐tune the phase separation to form suitable donor–acceptor interpenetrating networks, which is beneficial for exciton dissociation and charge transportation, leading to highly efficient photovoltaic performance.
The active layer morphology of all‐small‐molecule organic solar cells (SM‐OSCs) is tuned by side chain engineering of the donor molecules and thermal annealing (TA) of the devices. An SM‐OSC based on A–D–A‐structured SM1‐F with fluorine and alkyl substituents as the donor and Y6 as the acceptor, and with TA, demonstrates a high power conversion efficiency of 14.07%.</description><subject>Agglomeration</subject><subject>all‐small‐molecule organic solar cells</subject><subject>Annealing</subject><subject>Chains</subject><subject>Chemical synthesis</subject><subject>Donor materials</subject><subject>Energy conversion efficiency</subject><subject>Excitons</subject><subject>Fluorine</subject><subject>Interpenetrating networks</subject><subject>Materials science</subject><subject>Molecular chains</subject><subject>Morphology</subject><subject>Phase separation</subject><subject>Photovoltaic cells</subject><subject>side‐chain engineering</subject><subject>small molecule donor materials</subject><subject>Solar cells</subject><subject>thermal annealing</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkbGO1DAURS0EYoeFlhJZoqHJ4NiOE5fR7MAizWiLWerISZ4Trxx7cBJW6fgE_oL_4kvwMMsi0VC95vj43XcRep2SdUoIfa_aQa0pSSUpWM6eoFWa0TThRGZP0YpIliVS8OICvRjHO0KIFEQ8RxeM0pxkPFuhH9em6-2Ct1qbxoCbcGntz2_fD4P6PffeQjNbwDehU840-OCtCngD1o743kw9Lo_H4I_BqAlw2UzmK-CdWiDgvQ_H3lvfLbhe8MG0gDe9Mg5vXWccQDCuw17jK-_8iT5_NGLlWnzbQ4gb4NI5UDaCL9EzrewIrx7mJfr8YXu7uU52Nx8_bcpd0sT4LNFtAxBzEsGygmsNGupU5PEEgjZF3mouWyHyVMs8YyytuVCcclLnIKEoJGWX6N3ZG0N9mWGcqsGMTUyrHPh5rCgrCkIYlTKib_9B7_wcXNyuikpBBSc5j9T6TDXBj2MAXcVbDSosVUqqU4XVqcLqscL44M2Ddq4HaB_xP51FQJ6Be2Nh-Y-uKq_25V_5L8Umqs0</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Qiu, Beibei</creator><creator>Chen, Zeng</creator><creator>Qin, Shucheng</creator><creator>Yao, Jia</creator><creator>Huang, Wenchao</creator><creator>Meng, Lei</creator><creator>Zhu, Haiming</creator><creator>Yang, Yang (Michael)</creator><creator>Zhang, Zhi‐Guo</creator><creator>Li, Yongfang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2565-2748</orcidid></search><sort><creationdate>20200501</creationdate><title>Highly Efficient All‐Small‐Molecule Organic Solar Cells with Appropriate Active Layer Morphology by Side Chain Engineering of Donor Molecules and Thermal Annealing</title><author>Qiu, Beibei ; Chen, Zeng ; Qin, Shucheng ; Yao, Jia ; Huang, Wenchao ; Meng, Lei ; Zhu, Haiming ; Yang, Yang (Michael) ; Zhang, Zhi‐Guo ; Li, Yongfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-fdcee000063584ffefeb16764862c87df49d6671f975331b46a4240b7e9e88923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agglomeration</topic><topic>all‐small‐molecule organic solar cells</topic><topic>Annealing</topic><topic>Chains</topic><topic>Chemical synthesis</topic><topic>Donor materials</topic><topic>Energy conversion efficiency</topic><topic>Excitons</topic><topic>Fluorine</topic><topic>Interpenetrating networks</topic><topic>Materials science</topic><topic>Molecular chains</topic><topic>Morphology</topic><topic>Phase separation</topic><topic>Photovoltaic cells</topic><topic>side‐chain engineering</topic><topic>small molecule donor materials</topic><topic>Solar cells</topic><topic>thermal annealing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Beibei</creatorcontrib><creatorcontrib>Chen, Zeng</creatorcontrib><creatorcontrib>Qin, Shucheng</creatorcontrib><creatorcontrib>Yao, Jia</creatorcontrib><creatorcontrib>Huang, Wenchao</creatorcontrib><creatorcontrib>Meng, Lei</creatorcontrib><creatorcontrib>Zhu, Haiming</creatorcontrib><creatorcontrib>Yang, Yang (Michael)</creatorcontrib><creatorcontrib>Zhang, Zhi‐Guo</creatorcontrib><creatorcontrib>Li, Yongfang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Beibei</au><au>Chen, Zeng</au><au>Qin, Shucheng</au><au>Yao, Jia</au><au>Huang, Wenchao</au><au>Meng, Lei</au><au>Zhu, Haiming</au><au>Yang, Yang (Michael)</au><au>Zhang, Zhi‐Guo</au><au>Li, Yongfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Efficient All‐Small‐Molecule Organic Solar Cells with Appropriate Active Layer Morphology by Side Chain Engineering of Donor Molecules and Thermal Annealing</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>32</volume><issue>21</issue><spage>e1908373</spage><epage>n/a</epage><pages>e1908373-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>It is very important to fine‐tune the nanoscale morphology of donor:acceptor blend active layers for improving the photovoltaic performance of all‐small‐molecule organic solar cells (SM‐OSCs). In this work, two new small molecule donor materials are synthesized with different substituents on their thiophene conjugated side chains, including SM1‐S with alkylthio and SM1‐F with fluorine and alkyl substituents, and the previously reported donor molecule SM1 with an alkyl substituent, for investigating the effect of different conjugated side chains on the molecular aggregation and the photophysical, and photovoltaic properties of the donor molecules. As a result, an SM1‐F‐based SM‐OSC with Y6 as the acceptor, and with thermal annealing (TA) at 120 °C for 10 min, demonstrates the highest power conversion efficiency value of 14.07%, which is one of the best values for SM‐OSCs reported so far. Besides, these results also reveal that different side chains of the small molecules can distinctly influence the crystallinity characteristics and aggregation features, and TA treatment can effectively fine‐tune the phase separation to form suitable donor–acceptor interpenetrating networks, which is beneficial for exciton dissociation and charge transportation, leading to highly efficient photovoltaic performance.
The active layer morphology of all‐small‐molecule organic solar cells (SM‐OSCs) is tuned by side chain engineering of the donor molecules and thermal annealing (TA) of the devices. An SM‐OSC based on A–D–A‐structured SM1‐F with fluorine and alkyl substituents as the donor and Y6 as the acceptor, and with TA, demonstrates a high power conversion efficiency of 14.07%.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32270545</pmid><doi>10.1002/adma.201908373</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2565-2748</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2020-05, Vol.32 (21), p.e1908373-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2388003299 |
source | Access via Wiley Online Library |
subjects | Agglomeration all‐small‐molecule organic solar cells Annealing Chains Chemical synthesis Donor materials Energy conversion efficiency Excitons Fluorine Interpenetrating networks Materials science Molecular chains Morphology Phase separation Photovoltaic cells side‐chain engineering small molecule donor materials Solar cells thermal annealing |
title | Highly Efficient All‐Small‐Molecule Organic Solar Cells with Appropriate Active Layer Morphology by Side Chain Engineering of Donor Molecules and Thermal Annealing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Efficient%20All%E2%80%90Small%E2%80%90Molecule%20Organic%20Solar%20Cells%20with%20Appropriate%20Active%20Layer%20Morphology%20by%20Side%20Chain%20Engineering%20of%20Donor%20Molecules%20and%20Thermal%20Annealing&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Qiu,%20Beibei&rft.date=2020-05-01&rft.volume=32&rft.issue=21&rft.spage=e1908373&rft.epage=n/a&rft.pages=e1908373-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201908373&rft_dat=%3Cproquest_cross%3E2406264074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406264074&rft_id=info:pmid/32270545&rfr_iscdi=true |