Ultrasonic cavitation to prepare ECM hydrogels
Hydrogels composed of extracellular matrix (ECM) have been used as a substrate for 3D organoid culture, and in numerous preclinical and clinical applications to facilitate repair and reconstruction of a variety of tissues. However, these ECM hydrogel materials are fabricated using lengthy methods th...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2020-05, Vol.108, p.77-86 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | |
container_start_page | 77 |
container_title | Acta biomaterialia |
container_volume | 108 |
creator | Hussey, George S. Nascari, David G. Saldin, Lindsey T. Kolich, Brian Lee, Yoojin C. Crum, Raphael J. El-Mossier, Salma O. D'Angelo, William Dziki, Jenna L. Badylak, Stephen F. |
description | Hydrogels composed of extracellular matrix (ECM) have been used as a substrate for 3D organoid culture, and in numerous preclinical and clinical applications to facilitate repair and reconstruction of a variety of tissues. However, these ECM hydrogel materials are fabricated using lengthy methods that have focused on enzymatic digestion of the ECM with an acid protease in an acidic solution; or the use of chaotropic extraction buffers and dialysis procedures which can affect native protein structure and function. Herein we report a method to prepare hydrogels from ECM bioscaffolds using ultrasonic cavitation. The solubilized ECM can be induced to rapidly self-assemble into a gel by adjusting temperature, and the material properties of the gel can be tailored by adjusting ECM concentration and sonication parameters. The present study shows that ECM bioscaffolds can be successfully solubilized without enzymatic digestion and induced to repolymerize into a gel form capable of supporting cell growth.
ECM hydrogels have been used in numerous preclinical studies to facilitate repair of tissue following injury. However, there has been relatively little advancement in manufacturing techniques, thereby impeding progress in advancing this technology toward the clinic. Laboratory techniques for producing ECM hydrogels have focused on protease digestion methods, which require lengthy incubation times. The significance of this work lies in the development of a fundamentally different approach whereby an ECM hydrogel is rapidly formed without the need for acidic solutions or protease digestion. The ultrasonic cavitation method described herein represents a marked improvement in rheological properties and processing time over traditional enzymatic methods, and may lend itself as a platform for large-scale manufacturing of ECM hydrogels.
[Display omitted] |
doi_str_mv | 10.1016/j.actbio.2020.03.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2388000220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S174270612030177X</els_id><sourcerecordid>2442616990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-4fbb5ca4f937f8c7c87b6a604f5356e2c1b4a039e87181b080dc1d5bf259dcb53</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMorq7-A5GCFy-tk4-m6UWQZf2AFS_uOSRpqindZk26C_vv7dLVgwdhYObwvDPDg9AVhgwD5ndNpkyvnc8IEMiADsWP0BkWhUiLnIvjYS4YSQvgeILOY2wAqMBEnKIJJYQLwvAZypZtH1T0nTOJUVvXq975Lul9sg52rYJN5rPX5HNXBf9h23iBTmrVRnt56FO0fJy_z57TxdvTy-xhkRpaQp-yWuvcKFaXtKiFKYwoNFccWJ3TnFtisGYKaGlFgQXWIKAyuMp1TfKyMjqnU3Q77l0H_7WxsZcrF41tW9VZv4mSUCEAgBAY0Js_aOM3oRu-k4QxwjEvyz3FRsoEH2OwtVwHt1JhJzHIvU_ZyNGn3PuUQIfiQ-z6sHyjV7b6Df0IHID7ERjk2K2zQUbjbGds5YI1vay8-__CN1_Jhlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442616990</pqid></control><display><type>article</type><title>Ultrasonic cavitation to prepare ECM hydrogels</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hussey, George S. ; Nascari, David G. ; Saldin, Lindsey T. ; Kolich, Brian ; Lee, Yoojin C. ; Crum, Raphael J. ; El-Mossier, Salma O. ; D'Angelo, William ; Dziki, Jenna L. ; Badylak, Stephen F.</creator><creatorcontrib>Hussey, George S. ; Nascari, David G. ; Saldin, Lindsey T. ; Kolich, Brian ; Lee, Yoojin C. ; Crum, Raphael J. ; El-Mossier, Salma O. ; D'Angelo, William ; Dziki, Jenna L. ; Badylak, Stephen F.</creatorcontrib><description>Hydrogels composed of extracellular matrix (ECM) have been used as a substrate for 3D organoid culture, and in numerous preclinical and clinical applications to facilitate repair and reconstruction of a variety of tissues. However, these ECM hydrogel materials are fabricated using lengthy methods that have focused on enzymatic digestion of the ECM with an acid protease in an acidic solution; or the use of chaotropic extraction buffers and dialysis procedures which can affect native protein structure and function. Herein we report a method to prepare hydrogels from ECM bioscaffolds using ultrasonic cavitation. The solubilized ECM can be induced to rapidly self-assemble into a gel by adjusting temperature, and the material properties of the gel can be tailored by adjusting ECM concentration and sonication parameters. The present study shows that ECM bioscaffolds can be successfully solubilized without enzymatic digestion and induced to repolymerize into a gel form capable of supporting cell growth.
ECM hydrogels have been used in numerous preclinical studies to facilitate repair of tissue following injury. However, there has been relatively little advancement in manufacturing techniques, thereby impeding progress in advancing this technology toward the clinic. Laboratory techniques for producing ECM hydrogels have focused on protease digestion methods, which require lengthy incubation times. The significance of this work lies in the development of a fundamentally different approach whereby an ECM hydrogel is rapidly formed without the need for acidic solutions or protease digestion. The ultrasonic cavitation method described herein represents a marked improvement in rheological properties and processing time over traditional enzymatic methods, and may lend itself as a platform for large-scale manufacturing of ECM hydrogels.
[Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2020.03.036</identifier><identifier>PMID: 32268241</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Cavitation ; Cell culture ; Dialysis ; Digestion ; Extracellular Matrix ; Hydrogels ; Material properties ; Organoids ; Physical Phenomena ; Protein structure ; Rheology ; Sonication ; Structure-function relationships ; Substrates ; Ultrasonic cavitation ; Ultrasonics</subject><ispartof>Acta biomaterialia, 2020-05, Vol.108, p.77-86</ispartof><rights>2020 Acta Materialia Inc.</rights><rights>Copyright © 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV May 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-4fbb5ca4f937f8c7c87b6a604f5356e2c1b4a039e87181b080dc1d5bf259dcb53</citedby><cites>FETCH-LOGICAL-c390t-4fbb5ca4f937f8c7c87b6a604f5356e2c1b4a039e87181b080dc1d5bf259dcb53</cites><orcidid>0000-0002-1197-1588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S174270612030177X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32268241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hussey, George S.</creatorcontrib><creatorcontrib>Nascari, David G.</creatorcontrib><creatorcontrib>Saldin, Lindsey T.</creatorcontrib><creatorcontrib>Kolich, Brian</creatorcontrib><creatorcontrib>Lee, Yoojin C.</creatorcontrib><creatorcontrib>Crum, Raphael J.</creatorcontrib><creatorcontrib>El-Mossier, Salma O.</creatorcontrib><creatorcontrib>D'Angelo, William</creatorcontrib><creatorcontrib>Dziki, Jenna L.</creatorcontrib><creatorcontrib>Badylak, Stephen F.</creatorcontrib><title>Ultrasonic cavitation to prepare ECM hydrogels</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Hydrogels composed of extracellular matrix (ECM) have been used as a substrate for 3D organoid culture, and in numerous preclinical and clinical applications to facilitate repair and reconstruction of a variety of tissues. However, these ECM hydrogel materials are fabricated using lengthy methods that have focused on enzymatic digestion of the ECM with an acid protease in an acidic solution; or the use of chaotropic extraction buffers and dialysis procedures which can affect native protein structure and function. Herein we report a method to prepare hydrogels from ECM bioscaffolds using ultrasonic cavitation. The solubilized ECM can be induced to rapidly self-assemble into a gel by adjusting temperature, and the material properties of the gel can be tailored by adjusting ECM concentration and sonication parameters. The present study shows that ECM bioscaffolds can be successfully solubilized without enzymatic digestion and induced to repolymerize into a gel form capable of supporting cell growth.
ECM hydrogels have been used in numerous preclinical studies to facilitate repair of tissue following injury. However, there has been relatively little advancement in manufacturing techniques, thereby impeding progress in advancing this technology toward the clinic. Laboratory techniques for producing ECM hydrogels have focused on protease digestion methods, which require lengthy incubation times. The significance of this work lies in the development of a fundamentally different approach whereby an ECM hydrogel is rapidly formed without the need for acidic solutions or protease digestion. The ultrasonic cavitation method described herein represents a marked improvement in rheological properties and processing time over traditional enzymatic methods, and may lend itself as a platform for large-scale manufacturing of ECM hydrogels.
[Display omitted]</description><subject>Cavitation</subject><subject>Cell culture</subject><subject>Dialysis</subject><subject>Digestion</subject><subject>Extracellular Matrix</subject><subject>Hydrogels</subject><subject>Material properties</subject><subject>Organoids</subject><subject>Physical Phenomena</subject><subject>Protein structure</subject><subject>Rheology</subject><subject>Sonication</subject><subject>Structure-function relationships</subject><subject>Substrates</subject><subject>Ultrasonic cavitation</subject><subject>Ultrasonics</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMorq7-A5GCFy-tk4-m6UWQZf2AFS_uOSRpqindZk26C_vv7dLVgwdhYObwvDPDg9AVhgwD5ndNpkyvnc8IEMiADsWP0BkWhUiLnIvjYS4YSQvgeILOY2wAqMBEnKIJJYQLwvAZypZtH1T0nTOJUVvXq975Lul9sg52rYJN5rPX5HNXBf9h23iBTmrVRnt56FO0fJy_z57TxdvTy-xhkRpaQp-yWuvcKFaXtKiFKYwoNFccWJ3TnFtisGYKaGlFgQXWIKAyuMp1TfKyMjqnU3Q77l0H_7WxsZcrF41tW9VZv4mSUCEAgBAY0Js_aOM3oRu-k4QxwjEvyz3FRsoEH2OwtVwHt1JhJzHIvU_ZyNGn3PuUQIfiQ-z6sHyjV7b6Df0IHID7ERjk2K2zQUbjbGds5YI1vay8-__CN1_Jhlw</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Hussey, George S.</creator><creator>Nascari, David G.</creator><creator>Saldin, Lindsey T.</creator><creator>Kolich, Brian</creator><creator>Lee, Yoojin C.</creator><creator>Crum, Raphael J.</creator><creator>El-Mossier, Salma O.</creator><creator>D'Angelo, William</creator><creator>Dziki, Jenna L.</creator><creator>Badylak, Stephen F.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1197-1588</orcidid></search><sort><creationdate>202005</creationdate><title>Ultrasonic cavitation to prepare ECM hydrogels</title><author>Hussey, George S. ; Nascari, David G. ; Saldin, Lindsey T. ; Kolich, Brian ; Lee, Yoojin C. ; Crum, Raphael J. ; El-Mossier, Salma O. ; D'Angelo, William ; Dziki, Jenna L. ; Badylak, Stephen F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-4fbb5ca4f937f8c7c87b6a604f5356e2c1b4a039e87181b080dc1d5bf259dcb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cavitation</topic><topic>Cell culture</topic><topic>Dialysis</topic><topic>Digestion</topic><topic>Extracellular Matrix</topic><topic>Hydrogels</topic><topic>Material properties</topic><topic>Organoids</topic><topic>Physical Phenomena</topic><topic>Protein structure</topic><topic>Rheology</topic><topic>Sonication</topic><topic>Structure-function relationships</topic><topic>Substrates</topic><topic>Ultrasonic cavitation</topic><topic>Ultrasonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussey, George S.</creatorcontrib><creatorcontrib>Nascari, David G.</creatorcontrib><creatorcontrib>Saldin, Lindsey T.</creatorcontrib><creatorcontrib>Kolich, Brian</creatorcontrib><creatorcontrib>Lee, Yoojin C.</creatorcontrib><creatorcontrib>Crum, Raphael J.</creatorcontrib><creatorcontrib>El-Mossier, Salma O.</creatorcontrib><creatorcontrib>D'Angelo, William</creatorcontrib><creatorcontrib>Dziki, Jenna L.</creatorcontrib><creatorcontrib>Badylak, Stephen F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussey, George S.</au><au>Nascari, David G.</au><au>Saldin, Lindsey T.</au><au>Kolich, Brian</au><au>Lee, Yoojin C.</au><au>Crum, Raphael J.</au><au>El-Mossier, Salma O.</au><au>D'Angelo, William</au><au>Dziki, Jenna L.</au><au>Badylak, Stephen F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasonic cavitation to prepare ECM hydrogels</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2020-05</date><risdate>2020</risdate><volume>108</volume><spage>77</spage><epage>86</epage><pages>77-86</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Hydrogels composed of extracellular matrix (ECM) have been used as a substrate for 3D organoid culture, and in numerous preclinical and clinical applications to facilitate repair and reconstruction of a variety of tissues. However, these ECM hydrogel materials are fabricated using lengthy methods that have focused on enzymatic digestion of the ECM with an acid protease in an acidic solution; or the use of chaotropic extraction buffers and dialysis procedures which can affect native protein structure and function. Herein we report a method to prepare hydrogels from ECM bioscaffolds using ultrasonic cavitation. The solubilized ECM can be induced to rapidly self-assemble into a gel by adjusting temperature, and the material properties of the gel can be tailored by adjusting ECM concentration and sonication parameters. The present study shows that ECM bioscaffolds can be successfully solubilized without enzymatic digestion and induced to repolymerize into a gel form capable of supporting cell growth.
ECM hydrogels have been used in numerous preclinical studies to facilitate repair of tissue following injury. However, there has been relatively little advancement in manufacturing techniques, thereby impeding progress in advancing this technology toward the clinic. Laboratory techniques for producing ECM hydrogels have focused on protease digestion methods, which require lengthy incubation times. The significance of this work lies in the development of a fundamentally different approach whereby an ECM hydrogel is rapidly formed without the need for acidic solutions or protease digestion. The ultrasonic cavitation method described herein represents a marked improvement in rheological properties and processing time over traditional enzymatic methods, and may lend itself as a platform for large-scale manufacturing of ECM hydrogels.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32268241</pmid><doi>10.1016/j.actbio.2020.03.036</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1197-1588</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2020-05, Vol.108, p.77-86 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_2388000220 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Cavitation Cell culture Dialysis Digestion Extracellular Matrix Hydrogels Material properties Organoids Physical Phenomena Protein structure Rheology Sonication Structure-function relationships Substrates Ultrasonic cavitation Ultrasonics |
title | Ultrasonic cavitation to prepare ECM hydrogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasonic%20cavitation%20to%20prepare%20ECM%20hydrogels&rft.jtitle=Acta%20biomaterialia&rft.au=Hussey,%20George%20S.&rft.date=2020-05&rft.volume=108&rft.spage=77&rft.epage=86&rft.pages=77-86&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2020.03.036&rft_dat=%3Cproquest_cross%3E2442616990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442616990&rft_id=info:pmid/32268241&rft_els_id=S174270612030177X&rfr_iscdi=true |