Multifunctional poly(glycolic acid-co-propylene fumarate) electrospun fibers reinforced with graphene oxide and hydroxyapatite nanorods

A novel biodegradable poly(glycolic acid-co-propylene fumarate) (PGA-co-PPF) copolymer has been synthesized via ring-opening polymerization. Graphene oxide (GO) and hydroxyapatite nanorods have been incorporated into PGA-co-PPF through electrospinning to yield hybrid nanocomposite fibers, and their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2017-06, Vol.5 (22), p.4084-4096
Hauptverfasser: Díez-Pascual, Ana M, Díez-Vicente, Angel L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4096
container_issue 22
container_start_page 4084
container_title Journal of materials chemistry. B, Materials for biology and medicine
container_volume 5
creator Díez-Pascual, Ana M
Díez-Vicente, Angel L
description A novel biodegradable poly(glycolic acid-co-propylene fumarate) (PGA-co-PPF) copolymer has been synthesized via ring-opening polymerization. Graphene oxide (GO) and hydroxyapatite nanorods have been incorporated into PGA-co-PPF through electrospinning to yield hybrid nanocomposite fibers, and their morphology, water uptake, biodegradability, cytotoxicity, and mechanical, thermal and antibacterial properties have been analyzed. The addition of GO improved the dispersion of the HA nanorods within the matrix, and led to the formation of thinner fibers. The simultaneous incorporation of both nanofillers significantly increased the water absorption, biodegradation rate and protein adsorption capability of PGA-co-PPF. The hybrids induced higher osteoblast cell vitality and alkaline phosphatase activity than the neat copolymer and binary nanocomposites with either HA or GO, and showed higher biocidal activity against Gram-positive S. aureus and Gram-negative E. coli bacteria. Furthermore, experimental results revealed a synergistic effect of the nanofillers on improving the copolymer biocompatibility, thermal stability, stiffness, strength and toughness, and the nanocomposite with 20 wt% HA and 5 wt% GO exhibited the best combination of properties. The development of multifunctional polymer nanocomposite fibers with good biodegradability, very low toxicity, high tensile modulus and strong bactericidal activity opens up new perspectives for bone tissue engineering applications.
doi_str_mv 10.1039/c7tb00497d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2387648378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1911619237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-99ce1286dd2056c609cde700fa2ca3e60ed584b86119f4587d0e622c85a2efaa3</originalsourceid><addsrcrecordid>eNqNkc1uFDEQhEcIRKKQCw-AfAxIA_4b_xxhgQQpKJdE4jby2u2skdcebI_IPEFemwkJuZK-dB--Lqmquu41we8JZvqDlW2LMdfSPesOKR5wLweinj_e-MdBd1zrT7yOIkIx_rI7YJQKTjg57G6_z7EFPyfbQk4moinH5eQ6LjbHYJGxwfU291PJ0xIhAfLz3hTT4C2CCLaVXKc5IR-2UCoqEJLPxYJDv0Pboetipt3dV74JDpBJDu0WV_LNYibTQgOUTMolu_qqe-FNrHD8sI-6q69fLjdn_fnF6bfNx_PeMs1br7UFQpVwbrUnrMDaOpAYe0OtYSAwuEHxrRKEaM8HJR0GQalVg6HgjWFH3cm97uro1wy1jftQLcRoEuS5jpQpKbhiUv0XJZoMjA5Y8qegRBBNmVzRd_eoXaOrBfw4lbBGuowEj3eNjht5-elvo59X-M2D7rzdg3tE__XH_gAsCJ5L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1911619237</pqid></control><display><type>article</type><title>Multifunctional poly(glycolic acid-co-propylene fumarate) electrospun fibers reinforced with graphene oxide and hydroxyapatite nanorods</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Díez-Pascual, Ana M ; Díez-Vicente, Angel L</creator><creatorcontrib>Díez-Pascual, Ana M ; Díez-Vicente, Angel L</creatorcontrib><description>A novel biodegradable poly(glycolic acid-co-propylene fumarate) (PGA-co-PPF) copolymer has been synthesized via ring-opening polymerization. Graphene oxide (GO) and hydroxyapatite nanorods have been incorporated into PGA-co-PPF through electrospinning to yield hybrid nanocomposite fibers, and their morphology, water uptake, biodegradability, cytotoxicity, and mechanical, thermal and antibacterial properties have been analyzed. The addition of GO improved the dispersion of the HA nanorods within the matrix, and led to the formation of thinner fibers. The simultaneous incorporation of both nanofillers significantly increased the water absorption, biodegradation rate and protein adsorption capability of PGA-co-PPF. The hybrids induced higher osteoblast cell vitality and alkaline phosphatase activity than the neat copolymer and binary nanocomposites with either HA or GO, and showed higher biocidal activity against Gram-positive S. aureus and Gram-negative E. coli bacteria. Furthermore, experimental results revealed a synergistic effect of the nanofillers on improving the copolymer biocompatibility, thermal stability, stiffness, strength and toughness, and the nanocomposite with 20 wt% HA and 5 wt% GO exhibited the best combination of properties. The development of multifunctional polymer nanocomposite fibers with good biodegradability, very low toxicity, high tensile modulus and strong bactericidal activity opens up new perspectives for bone tissue engineering applications.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/c7tb00497d</identifier><identifier>PMID: 32264141</identifier><language>eng</language><publisher>England</publisher><subject>Biocompatibility ; Biodegradability ; Biomedical materials ; Copolymers ; Escherichia coli ; Fibers ; Graphene ; Hydroxyapatite ; Nanocomposites ; Staphylococcus aureus</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2017-06, Vol.5 (22), p.4084-4096</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-99ce1286dd2056c609cde700fa2ca3e60ed584b86119f4587d0e622c85a2efaa3</citedby><cites>FETCH-LOGICAL-c394t-99ce1286dd2056c609cde700fa2ca3e60ed584b86119f4587d0e622c85a2efaa3</cites><orcidid>0000-0001-7405-2354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32264141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Díez-Pascual, Ana M</creatorcontrib><creatorcontrib>Díez-Vicente, Angel L</creatorcontrib><title>Multifunctional poly(glycolic acid-co-propylene fumarate) electrospun fibers reinforced with graphene oxide and hydroxyapatite nanorods</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>A novel biodegradable poly(glycolic acid-co-propylene fumarate) (PGA-co-PPF) copolymer has been synthesized via ring-opening polymerization. Graphene oxide (GO) and hydroxyapatite nanorods have been incorporated into PGA-co-PPF through electrospinning to yield hybrid nanocomposite fibers, and their morphology, water uptake, biodegradability, cytotoxicity, and mechanical, thermal and antibacterial properties have been analyzed. The addition of GO improved the dispersion of the HA nanorods within the matrix, and led to the formation of thinner fibers. The simultaneous incorporation of both nanofillers significantly increased the water absorption, biodegradation rate and protein adsorption capability of PGA-co-PPF. The hybrids induced higher osteoblast cell vitality and alkaline phosphatase activity than the neat copolymer and binary nanocomposites with either HA or GO, and showed higher biocidal activity against Gram-positive S. aureus and Gram-negative E. coli bacteria. Furthermore, experimental results revealed a synergistic effect of the nanofillers on improving the copolymer biocompatibility, thermal stability, stiffness, strength and toughness, and the nanocomposite with 20 wt% HA and 5 wt% GO exhibited the best combination of properties. The development of multifunctional polymer nanocomposite fibers with good biodegradability, very low toxicity, high tensile modulus and strong bactericidal activity opens up new perspectives for bone tissue engineering applications.</description><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biomedical materials</subject><subject>Copolymers</subject><subject>Escherichia coli</subject><subject>Fibers</subject><subject>Graphene</subject><subject>Hydroxyapatite</subject><subject>Nanocomposites</subject><subject>Staphylococcus aureus</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkc1uFDEQhEcIRKKQCw-AfAxIA_4b_xxhgQQpKJdE4jby2u2skdcebI_IPEFemwkJuZK-dB--Lqmquu41we8JZvqDlW2LMdfSPesOKR5wLweinj_e-MdBd1zrT7yOIkIx_rI7YJQKTjg57G6_z7EFPyfbQk4moinH5eQ6LjbHYJGxwfU291PJ0xIhAfLz3hTT4C2CCLaVXKc5IR-2UCoqEJLPxYJDv0Pboetipt3dV74JDpBJDu0WV_LNYibTQgOUTMolu_qqe-FNrHD8sI-6q69fLjdn_fnF6bfNx_PeMs1br7UFQpVwbrUnrMDaOpAYe0OtYSAwuEHxrRKEaM8HJR0GQalVg6HgjWFH3cm97uro1wy1jftQLcRoEuS5jpQpKbhiUv0XJZoMjA5Y8qegRBBNmVzRd_eoXaOrBfw4lbBGuowEj3eNjht5-elvo59X-M2D7rzdg3tE__XH_gAsCJ5L</recordid><startdate>20170614</startdate><enddate>20170614</enddate><creator>Díez-Pascual, Ana M</creator><creator>Díez-Vicente, Angel L</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7405-2354</orcidid></search><sort><creationdate>20170614</creationdate><title>Multifunctional poly(glycolic acid-co-propylene fumarate) electrospun fibers reinforced with graphene oxide and hydroxyapatite nanorods</title><author>Díez-Pascual, Ana M ; Díez-Vicente, Angel L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-99ce1286dd2056c609cde700fa2ca3e60ed584b86119f4587d0e622c85a2efaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biomedical materials</topic><topic>Copolymers</topic><topic>Escherichia coli</topic><topic>Fibers</topic><topic>Graphene</topic><topic>Hydroxyapatite</topic><topic>Nanocomposites</topic><topic>Staphylococcus aureus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díez-Pascual, Ana M</creatorcontrib><creatorcontrib>Díez-Vicente, Angel L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díez-Pascual, Ana M</au><au>Díez-Vicente, Angel L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunctional poly(glycolic acid-co-propylene fumarate) electrospun fibers reinforced with graphene oxide and hydroxyapatite nanorods</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2017-06-14</date><risdate>2017</risdate><volume>5</volume><issue>22</issue><spage>4084</spage><epage>4096</epage><pages>4084-4096</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>A novel biodegradable poly(glycolic acid-co-propylene fumarate) (PGA-co-PPF) copolymer has been synthesized via ring-opening polymerization. Graphene oxide (GO) and hydroxyapatite nanorods have been incorporated into PGA-co-PPF through electrospinning to yield hybrid nanocomposite fibers, and their morphology, water uptake, biodegradability, cytotoxicity, and mechanical, thermal and antibacterial properties have been analyzed. The addition of GO improved the dispersion of the HA nanorods within the matrix, and led to the formation of thinner fibers. The simultaneous incorporation of both nanofillers significantly increased the water absorption, biodegradation rate and protein adsorption capability of PGA-co-PPF. The hybrids induced higher osteoblast cell vitality and alkaline phosphatase activity than the neat copolymer and binary nanocomposites with either HA or GO, and showed higher biocidal activity against Gram-positive S. aureus and Gram-negative E. coli bacteria. Furthermore, experimental results revealed a synergistic effect of the nanofillers on improving the copolymer biocompatibility, thermal stability, stiffness, strength and toughness, and the nanocomposite with 20 wt% HA and 5 wt% GO exhibited the best combination of properties. The development of multifunctional polymer nanocomposite fibers with good biodegradability, very low toxicity, high tensile modulus and strong bactericidal activity opens up new perspectives for bone tissue engineering applications.</abstract><cop>England</cop><pmid>32264141</pmid><doi>10.1039/c7tb00497d</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7405-2354</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-750X
ispartof Journal of materials chemistry. B, Materials for biology and medicine, 2017-06, Vol.5 (22), p.4084-4096
issn 2050-750X
2050-7518
language eng
recordid cdi_proquest_miscellaneous_2387648378
source Royal Society Of Chemistry Journals 2008-
subjects Biocompatibility
Biodegradability
Biomedical materials
Copolymers
Escherichia coli
Fibers
Graphene
Hydroxyapatite
Nanocomposites
Staphylococcus aureus
title Multifunctional poly(glycolic acid-co-propylene fumarate) electrospun fibers reinforced with graphene oxide and hydroxyapatite nanorods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunctional%20poly(glycolic%20acid-co-propylene%20fumarate)%20electrospun%20fibers%20reinforced%20with%20graphene%20oxide%20and%20hydroxyapatite%20nanorods&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=D%C3%ADez-Pascual,%20Ana%20M&rft.date=2017-06-14&rft.volume=5&rft.issue=22&rft.spage=4084&rft.epage=4096&rft.pages=4084-4096&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/c7tb00497d&rft_dat=%3Cproquest_cross%3E1911619237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1911619237&rft_id=info:pmid/32264141&rfr_iscdi=true