Near-Infrared Voltage Nanosensors Enable Real-Time Imaging of Neuronal Activities in Mice and Zebrafish

Optical voltage sensors with the ability to monitor neuronal activities are invaluable tools for studying information processing of the brain. However, the current genetically encoded voltage indicators usually require high-power visible light for excitation and are limited to genetically addressabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-04, Vol.142 (17), p.7858-7867
Hauptverfasser: Liu, Jianan, Zhang, Rongwei, Shang, Chunfeng, Zhang, Yu, Feng, Yun, Pan, Limin, Xu, Bing, Hyeon, Taeghwan, Bu, Wenbo, Shi, Jianlin, Du, Jiulin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7867
container_issue 17
container_start_page 7858
container_title Journal of the American Chemical Society
container_volume 142
creator Liu, Jianan
Zhang, Rongwei
Shang, Chunfeng
Zhang, Yu
Feng, Yun
Pan, Limin
Xu, Bing
Hyeon, Taeghwan
Bu, Wenbo
Shi, Jianlin
Du, Jiulin
description Optical voltage sensors with the ability to monitor neuronal activities are invaluable tools for studying information processing of the brain. However, the current genetically encoded voltage indicators usually require high-power visible light for excitation and are limited to genetically addressable model animals. Here, we report a near-infrared (NIR)-excited nongenetic voltage nanosensor that achieves stable recording of neuronal membrane potential in intact animals. The nanosensor is composed of a Förster resonance energy transfer (FRET) pair, the outer membrane-anchored upconversion nanoparticle (UCNP), and the membrane-embedded dipicrylamine (DPA). The negative charge of DPA allows membrane potential fluctuation to affect the distance between the DPA and UCNP, therefore changing the FRET efficiency. Consequently, the emission intensity of the nanosensor can report the membrane potential. Using the nanosensor, we monitor not only electrically evoked changes in the membrane potential of cultured cells but also sensory responses of neurons in intact zebrafish and brain state-modulated subthreshold activities of cortical neurons in intact mice.
doi_str_mv 10.1021/jacs.0c01025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2387646987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387646987</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-9f108140ea9685a3011fd92cb8a39b90e12d26cf01147a329a4de7b126c4ff4b3</originalsourceid><addsrcrecordid>eNptkEtPwzAQhC0EouVx44x85ECK7TivY4V4VCpFQoUDl2jjrIurxC52gsS_JxUFLpxWs5qZ1X6EnHE24UzwqzWoMGGKDSLZI2OeCBYlXKT7ZMwYE1GWp_GIHIWwHqQUOT8ko1iIpJBxNiarBYKPZlZ78FjTF9d0sEK6AOsC2uB8oDcWqgbpE0ITLU2LdNbCytgVdZousPfOQkOnqjMfpjMYqLH0wSikYGv6ipUHbcLbCTnQ0AQ83c1j8nx7s7y-j-aPd7Pr6TyCWMguKjRnOZcMoUjzBGLGua4Loaoc4qIqGHJRi1TpYS-zIVKArDGrhneV1FpW8TG5-O7dePfeY-jK1gSFTQMWXR9KEedZKtMizwbr5bdVeReCR11uvGnBf5aclVu05RZtuUM72M93zX3VYv1r_mH5d3qbWrveD1zC_11f1sKBRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387646987</pqid></control><display><type>article</type><title>Near-Infrared Voltage Nanosensors Enable Real-Time Imaging of Neuronal Activities in Mice and Zebrafish</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Liu, Jianan ; Zhang, Rongwei ; Shang, Chunfeng ; Zhang, Yu ; Feng, Yun ; Pan, Limin ; Xu, Bing ; Hyeon, Taeghwan ; Bu, Wenbo ; Shi, Jianlin ; Du, Jiulin</creator><creatorcontrib>Liu, Jianan ; Zhang, Rongwei ; Shang, Chunfeng ; Zhang, Yu ; Feng, Yun ; Pan, Limin ; Xu, Bing ; Hyeon, Taeghwan ; Bu, Wenbo ; Shi, Jianlin ; Du, Jiulin</creatorcontrib><description>Optical voltage sensors with the ability to monitor neuronal activities are invaluable tools for studying information processing of the brain. However, the current genetically encoded voltage indicators usually require high-power visible light for excitation and are limited to genetically addressable model animals. Here, we report a near-infrared (NIR)-excited nongenetic voltage nanosensor that achieves stable recording of neuronal membrane potential in intact animals. The nanosensor is composed of a Förster resonance energy transfer (FRET) pair, the outer membrane-anchored upconversion nanoparticle (UCNP), and the membrane-embedded dipicrylamine (DPA). The negative charge of DPA allows membrane potential fluctuation to affect the distance between the DPA and UCNP, therefore changing the FRET efficiency. Consequently, the emission intensity of the nanosensor can report the membrane potential. Using the nanosensor, we monitor not only electrically evoked changes in the membrane potential of cultured cells but also sensory responses of neurons in intact zebrafish and brain state-modulated subthreshold activities of cortical neurons in intact mice.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c01025</identifier><identifier>PMID: 32259437</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Fluorescence Resonance Energy Transfer - methods ; Mice ; Nanotechnology - methods ; Neurons - metabolism ; Spectroscopy, Near-Infrared - methods ; Zebrafish</subject><ispartof>Journal of the American Chemical Society, 2020-04, Vol.142 (17), p.7858-7867</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-9f108140ea9685a3011fd92cb8a39b90e12d26cf01147a329a4de7b126c4ff4b3</citedby><cites>FETCH-LOGICAL-a324t-9f108140ea9685a3011fd92cb8a39b90e12d26cf01147a329a4de7b126c4ff4b3</cites><orcidid>0000-0001-5959-6257 ; 0000-0001-8790-195X ; 0000-0001-6664-3453 ; 0000-0002-2953-4562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c01025$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c01025$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32259437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jianan</creatorcontrib><creatorcontrib>Zhang, Rongwei</creatorcontrib><creatorcontrib>Shang, Chunfeng</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Feng, Yun</creatorcontrib><creatorcontrib>Pan, Limin</creatorcontrib><creatorcontrib>Xu, Bing</creatorcontrib><creatorcontrib>Hyeon, Taeghwan</creatorcontrib><creatorcontrib>Bu, Wenbo</creatorcontrib><creatorcontrib>Shi, Jianlin</creatorcontrib><creatorcontrib>Du, Jiulin</creatorcontrib><title>Near-Infrared Voltage Nanosensors Enable Real-Time Imaging of Neuronal Activities in Mice and Zebrafish</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Optical voltage sensors with the ability to monitor neuronal activities are invaluable tools for studying information processing of the brain. However, the current genetically encoded voltage indicators usually require high-power visible light for excitation and are limited to genetically addressable model animals. Here, we report a near-infrared (NIR)-excited nongenetic voltage nanosensor that achieves stable recording of neuronal membrane potential in intact animals. The nanosensor is composed of a Förster resonance energy transfer (FRET) pair, the outer membrane-anchored upconversion nanoparticle (UCNP), and the membrane-embedded dipicrylamine (DPA). The negative charge of DPA allows membrane potential fluctuation to affect the distance between the DPA and UCNP, therefore changing the FRET efficiency. Consequently, the emission intensity of the nanosensor can report the membrane potential. Using the nanosensor, we monitor not only electrically evoked changes in the membrane potential of cultured cells but also sensory responses of neurons in intact zebrafish and brain state-modulated subthreshold activities of cortical neurons in intact mice.</description><subject>Animals</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Mice</subject><subject>Nanotechnology - methods</subject><subject>Neurons - metabolism</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Zebrafish</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkEtPwzAQhC0EouVx44x85ECK7TivY4V4VCpFQoUDl2jjrIurxC52gsS_JxUFLpxWs5qZ1X6EnHE24UzwqzWoMGGKDSLZI2OeCBYlXKT7ZMwYE1GWp_GIHIWwHqQUOT8ko1iIpJBxNiarBYKPZlZ78FjTF9d0sEK6AOsC2uB8oDcWqgbpE0ITLU2LdNbCytgVdZousPfOQkOnqjMfpjMYqLH0wSikYGv6ipUHbcLbCTnQ0AQ83c1j8nx7s7y-j-aPd7Pr6TyCWMguKjRnOZcMoUjzBGLGua4Loaoc4qIqGHJRi1TpYS-zIVKArDGrhneV1FpW8TG5-O7dePfeY-jK1gSFTQMWXR9KEedZKtMizwbr5bdVeReCR11uvGnBf5aclVu05RZtuUM72M93zX3VYv1r_mH5d3qbWrveD1zC_11f1sKBRg</recordid><startdate>20200429</startdate><enddate>20200429</enddate><creator>Liu, Jianan</creator><creator>Zhang, Rongwei</creator><creator>Shang, Chunfeng</creator><creator>Zhang, Yu</creator><creator>Feng, Yun</creator><creator>Pan, Limin</creator><creator>Xu, Bing</creator><creator>Hyeon, Taeghwan</creator><creator>Bu, Wenbo</creator><creator>Shi, Jianlin</creator><creator>Du, Jiulin</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5959-6257</orcidid><orcidid>https://orcid.org/0000-0001-8790-195X</orcidid><orcidid>https://orcid.org/0000-0001-6664-3453</orcidid><orcidid>https://orcid.org/0000-0002-2953-4562</orcidid></search><sort><creationdate>20200429</creationdate><title>Near-Infrared Voltage Nanosensors Enable Real-Time Imaging of Neuronal Activities in Mice and Zebrafish</title><author>Liu, Jianan ; Zhang, Rongwei ; Shang, Chunfeng ; Zhang, Yu ; Feng, Yun ; Pan, Limin ; Xu, Bing ; Hyeon, Taeghwan ; Bu, Wenbo ; Shi, Jianlin ; Du, Jiulin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-9f108140ea9685a3011fd92cb8a39b90e12d26cf01147a329a4de7b126c4ff4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Mice</topic><topic>Nanotechnology - methods</topic><topic>Neurons - metabolism</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jianan</creatorcontrib><creatorcontrib>Zhang, Rongwei</creatorcontrib><creatorcontrib>Shang, Chunfeng</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Feng, Yun</creatorcontrib><creatorcontrib>Pan, Limin</creatorcontrib><creatorcontrib>Xu, Bing</creatorcontrib><creatorcontrib>Hyeon, Taeghwan</creatorcontrib><creatorcontrib>Bu, Wenbo</creatorcontrib><creatorcontrib>Shi, Jianlin</creatorcontrib><creatorcontrib>Du, Jiulin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jianan</au><au>Zhang, Rongwei</au><au>Shang, Chunfeng</au><au>Zhang, Yu</au><au>Feng, Yun</au><au>Pan, Limin</au><au>Xu, Bing</au><au>Hyeon, Taeghwan</au><au>Bu, Wenbo</au><au>Shi, Jianlin</au><au>Du, Jiulin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near-Infrared Voltage Nanosensors Enable Real-Time Imaging of Neuronal Activities in Mice and Zebrafish</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-04-29</date><risdate>2020</risdate><volume>142</volume><issue>17</issue><spage>7858</spage><epage>7867</epage><pages>7858-7867</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Optical voltage sensors with the ability to monitor neuronal activities are invaluable tools for studying information processing of the brain. However, the current genetically encoded voltage indicators usually require high-power visible light for excitation and are limited to genetically addressable model animals. Here, we report a near-infrared (NIR)-excited nongenetic voltage nanosensor that achieves stable recording of neuronal membrane potential in intact animals. The nanosensor is composed of a Förster resonance energy transfer (FRET) pair, the outer membrane-anchored upconversion nanoparticle (UCNP), and the membrane-embedded dipicrylamine (DPA). The negative charge of DPA allows membrane potential fluctuation to affect the distance between the DPA and UCNP, therefore changing the FRET efficiency. Consequently, the emission intensity of the nanosensor can report the membrane potential. Using the nanosensor, we monitor not only electrically evoked changes in the membrane potential of cultured cells but also sensory responses of neurons in intact zebrafish and brain state-modulated subthreshold activities of cortical neurons in intact mice.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32259437</pmid><doi>10.1021/jacs.0c01025</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5959-6257</orcidid><orcidid>https://orcid.org/0000-0001-8790-195X</orcidid><orcidid>https://orcid.org/0000-0001-6664-3453</orcidid><orcidid>https://orcid.org/0000-0002-2953-4562</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2020-04, Vol.142 (17), p.7858-7867
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2387646987
source MEDLINE; American Chemical Society Journals
subjects Animals
Fluorescence Resonance Energy Transfer - methods
Mice
Nanotechnology - methods
Neurons - metabolism
Spectroscopy, Near-Infrared - methods
Zebrafish
title Near-Infrared Voltage Nanosensors Enable Real-Time Imaging of Neuronal Activities in Mice and Zebrafish
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near-Infrared%20Voltage%20Nanosensors%20Enable%20Real-Time%20Imaging%20of%20Neuronal%20Activities%20in%20Mice%20and%20Zebrafish&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Liu,%20Jianan&rft.date=2020-04-29&rft.volume=142&rft.issue=17&rft.spage=7858&rft.epage=7867&rft.pages=7858-7867&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c01025&rft_dat=%3Cproquest_cross%3E2387646987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387646987&rft_id=info:pmid/32259437&rfr_iscdi=true