A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration
Biomaterial-based membranes represent a promising therapeutic option for periodontal diseases. Although conventional periodontal membranes function greatly in preventing the ingrowth of both fibroblasts and epithelial cells as well as connective tissues, they are not capable of promoting periodontal...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2020-05, Vol.108, p.207-222 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 222 |
---|---|
container_issue | |
container_start_page | 207 |
container_title | Acta biomaterialia |
container_volume | 108 |
creator | Liu, Xuezhe He, Xi Jin, Dawei Wu, Shuting Wang, Hongsheng Yin, Meng Aldalbahi, Ali El-Newehy, Mohamed Mo, Xiumei Wu, Jinglei |
description | Biomaterial-based membranes represent a promising therapeutic option for periodontal diseases. Although conventional periodontal membranes function greatly in preventing the ingrowth of both fibroblasts and epithelial cells as well as connective tissues, they are not capable of promoting periodontal tissue regeneration. Here, we report a multifunctional periodontal membrane prepared by electrospinning biodegradable polymers with magnesium oxide nanoparticles (nMgO). nMgO is a light metal-based nanoparticle with high antibacterial capacity and can be fully resorbed in the body. Our results showed that incorporating nMgO into poly(L-lactic acid) (PLA)/gelatin significantly improved the overall properties of membranes, including elevated tensile strength to maintain structural stability and adjusted degradation rate to fit the time window of periodontal regeneration. Acidic degradation products of PLA were neutralized by alkaline ions from nMgO hydrolysis, ameliorating pH microenvironment beneficial for cell proliferation. In vitro studies demonstrated considerable antibacterial and osteogenic properties of nMgO-incorporated membranes that are highly valuable for periodontal regeneration. Further investigations in a rat periodontal defect model revealed that nMgO-incorporated membranes effectively guided periodontal tissue regeneration. Taken together, our data indicate that nMgO-incorporated membranes might be a promising therapeutic option for periodontal regeneration.
Traditional clinical treatments of periodontal diseases largely focus on the management of the pathologic processes, which cannot effectively regenerate the lost periodontal tissue. GTR, a classic method for periodontal regeneration, has shown promise in clinical practice. However, the current membranes might not fully fulfill the criteria of ideal membranes. Here, we report bioabsorbable nMgO-incorporated nanofibrous membranes prepared by electrospinning to provide an alternative for the clinical practice of GTR. The membranes not only function greatly as physical barriers but also exhibit high antibacterial and osteoinductive properties. We therefore believe that this study will inspire more practice work on the development of effective GTR membranes for periodontal regeneration.
[Display omitted] |
doi_str_mv | 10.1016/j.actbio.2020.03.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2387260204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706120301859</els_id><sourcerecordid>2442616703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-65bb58faac1d1815837746f77afaf73aec84aaeead333127532ab7dd8016f8353</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpab76D0ow5NKLHX3ZUi6BJbRpYSGXFnITY2kUtNjWRrID_ffR4k0POfQ0OjzvO6OHkK-MNoyy7nrXgJ37EBtOOW2oaKiUH8gp00rXqu30x_JWkteKduyEnOW8o1RoxvVnciI4b5nS8pQ8bqrS4fApgYN-wGpchjn4ZbJziBMM1QRT9KFPccnViGOfYMLKx1TtMZVgnOYCzSHnBauETzhhgkP0gnzyMGT8cpzn5M-P77_vftbbh_tfd5ttbcUNneuu7ftWewDLHNOs1UIp2XmlwINXAtBqCYAITgjBuGoFh145p4sCr0Urzsm3tXef4vOCeTZjyBaHodxZbjZcaMW7okgW9OoduotLKp8slJS8Y52iolBypWyKOSf0Zp_CCOmvYdQczJudWc2bg3lDhSnmS-zyWL70I7p_oTfVBbhdASw2XgImk23AyaILCe1sXAz_3_AKus-XZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442616703</pqid></control><display><type>article</type><title>A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Xuezhe ; He, Xi ; Jin, Dawei ; Wu, Shuting ; Wang, Hongsheng ; Yin, Meng ; Aldalbahi, Ali ; El-Newehy, Mohamed ; Mo, Xiumei ; Wu, Jinglei</creator><creatorcontrib>Liu, Xuezhe ; He, Xi ; Jin, Dawei ; Wu, Shuting ; Wang, Hongsheng ; Yin, Meng ; Aldalbahi, Ali ; El-Newehy, Mohamed ; Mo, Xiumei ; Wu, Jinglei</creatorcontrib><description>Biomaterial-based membranes represent a promising therapeutic option for periodontal diseases. Although conventional periodontal membranes function greatly in preventing the ingrowth of both fibroblasts and epithelial cells as well as connective tissues, they are not capable of promoting periodontal tissue regeneration. Here, we report a multifunctional periodontal membrane prepared by electrospinning biodegradable polymers with magnesium oxide nanoparticles (nMgO). nMgO is a light metal-based nanoparticle with high antibacterial capacity and can be fully resorbed in the body. Our results showed that incorporating nMgO into poly(L-lactic acid) (PLA)/gelatin significantly improved the overall properties of membranes, including elevated tensile strength to maintain structural stability and adjusted degradation rate to fit the time window of periodontal regeneration. Acidic degradation products of PLA were neutralized by alkaline ions from nMgO hydrolysis, ameliorating pH microenvironment beneficial for cell proliferation. In vitro studies demonstrated considerable antibacterial and osteogenic properties of nMgO-incorporated membranes that are highly valuable for periodontal regeneration. Further investigations in a rat periodontal defect model revealed that nMgO-incorporated membranes effectively guided periodontal tissue regeneration. Taken together, our data indicate that nMgO-incorporated membranes might be a promising therapeutic option for periodontal regeneration.
Traditional clinical treatments of periodontal diseases largely focus on the management of the pathologic processes, which cannot effectively regenerate the lost periodontal tissue. GTR, a classic method for periodontal regeneration, has shown promise in clinical practice. However, the current membranes might not fully fulfill the criteria of ideal membranes. Here, we report bioabsorbable nMgO-incorporated nanofibrous membranes prepared by electrospinning to provide an alternative for the clinical practice of GTR. The membranes not only function greatly as physical barriers but also exhibit high antibacterial and osteoinductive properties. We therefore believe that this study will inspire more practice work on the development of effective GTR membranes for periodontal regeneration.
[Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2020.03.044</identifier><identifier>PMID: 32251784</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Biocompatible Materials - pharmacology ; Biodegradability ; Biodegradation ; Biomaterials ; Biomedical materials ; Cell proliferation ; Connective tissues ; Degradation ; Degradation products ; Electrospinning ; Epithelial cells ; Fibroblasts ; Gelatin ; GTR ; Guided Tissue Regeneration, Periodontal ; Magnesium ; Magnesium oxide ; Magnesium oxide nanoparticles ; Membranes ; Membranes, Artificial ; Multi-functions ; Nanofibers ; Nanoparticles ; Periodontal diseases ; Periodontal regeneration ; Periodontium ; Polylactic acid ; Polymers ; Rats ; Regeneration ; Structural stability ; Superconductors (materials) ; Tensile strength ; Tissue engineering ; Tissues ; Windows (intervals)</subject><ispartof>Acta biomaterialia, 2020-05, Vol.108, p.207-222</ispartof><rights>2020</rights><rights>Copyright © 2020. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier BV May 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-65bb58faac1d1815837746f77afaf73aec84aaeead333127532ab7dd8016f8353</citedby><cites>FETCH-LOGICAL-c390t-65bb58faac1d1815837746f77afaf73aec84aaeead333127532ab7dd8016f8353</cites><orcidid>0000-0002-4265-0701 ; 0000-0003-0079-0236 ; 0000-0001-9549-3992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2020.03.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32251784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xuezhe</creatorcontrib><creatorcontrib>He, Xi</creatorcontrib><creatorcontrib>Jin, Dawei</creatorcontrib><creatorcontrib>Wu, Shuting</creatorcontrib><creatorcontrib>Wang, Hongsheng</creatorcontrib><creatorcontrib>Yin, Meng</creatorcontrib><creatorcontrib>Aldalbahi, Ali</creatorcontrib><creatorcontrib>El-Newehy, Mohamed</creatorcontrib><creatorcontrib>Mo, Xiumei</creatorcontrib><creatorcontrib>Wu, Jinglei</creatorcontrib><title>A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Biomaterial-based membranes represent a promising therapeutic option for periodontal diseases. Although conventional periodontal membranes function greatly in preventing the ingrowth of both fibroblasts and epithelial cells as well as connective tissues, they are not capable of promoting periodontal tissue regeneration. Here, we report a multifunctional periodontal membrane prepared by electrospinning biodegradable polymers with magnesium oxide nanoparticles (nMgO). nMgO is a light metal-based nanoparticle with high antibacterial capacity and can be fully resorbed in the body. Our results showed that incorporating nMgO into poly(L-lactic acid) (PLA)/gelatin significantly improved the overall properties of membranes, including elevated tensile strength to maintain structural stability and adjusted degradation rate to fit the time window of periodontal regeneration. Acidic degradation products of PLA were neutralized by alkaline ions from nMgO hydrolysis, ameliorating pH microenvironment beneficial for cell proliferation. In vitro studies demonstrated considerable antibacterial and osteogenic properties of nMgO-incorporated membranes that are highly valuable for periodontal regeneration. Further investigations in a rat periodontal defect model revealed that nMgO-incorporated membranes effectively guided periodontal tissue regeneration. Taken together, our data indicate that nMgO-incorporated membranes might be a promising therapeutic option for periodontal regeneration.
Traditional clinical treatments of periodontal diseases largely focus on the management of the pathologic processes, which cannot effectively regenerate the lost periodontal tissue. GTR, a classic method for periodontal regeneration, has shown promise in clinical practice. However, the current membranes might not fully fulfill the criteria of ideal membranes. Here, we report bioabsorbable nMgO-incorporated nanofibrous membranes prepared by electrospinning to provide an alternative for the clinical practice of GTR. The membranes not only function greatly as physical barriers but also exhibit high antibacterial and osteoinductive properties. We therefore believe that this study will inspire more practice work on the development of effective GTR membranes for periodontal regeneration.
[Display omitted]</description><subject>Animals</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cell proliferation</subject><subject>Connective tissues</subject><subject>Degradation</subject><subject>Degradation products</subject><subject>Electrospinning</subject><subject>Epithelial cells</subject><subject>Fibroblasts</subject><subject>Gelatin</subject><subject>GTR</subject><subject>Guided Tissue Regeneration, Periodontal</subject><subject>Magnesium</subject><subject>Magnesium oxide</subject><subject>Magnesium oxide nanoparticles</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Multi-functions</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Periodontal diseases</subject><subject>Periodontal regeneration</subject><subject>Periodontium</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Rats</subject><subject>Regeneration</subject><subject>Structural stability</subject><subject>Superconductors (materials)</subject><subject>Tensile strength</subject><subject>Tissue engineering</subject><subject>Tissues</subject><subject>Windows (intervals)</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1r3DAQhkVpab76D0ow5NKLHX3ZUi6BJbRpYSGXFnITY2kUtNjWRrID_ffR4k0POfQ0OjzvO6OHkK-MNoyy7nrXgJ37EBtOOW2oaKiUH8gp00rXqu30x_JWkteKduyEnOW8o1RoxvVnciI4b5nS8pQ8bqrS4fApgYN-wGpchjn4ZbJziBMM1QRT9KFPccnViGOfYMLKx1TtMZVgnOYCzSHnBauETzhhgkP0gnzyMGT8cpzn5M-P77_vftbbh_tfd5ttbcUNneuu7ftWewDLHNOs1UIp2XmlwINXAtBqCYAITgjBuGoFh145p4sCr0Urzsm3tXef4vOCeTZjyBaHodxZbjZcaMW7okgW9OoduotLKp8slJS8Y52iolBypWyKOSf0Zp_CCOmvYdQczJudWc2bg3lDhSnmS-zyWL70I7p_oTfVBbhdASw2XgImk23AyaILCe1sXAz_3_AKus-XZA</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Liu, Xuezhe</creator><creator>He, Xi</creator><creator>Jin, Dawei</creator><creator>Wu, Shuting</creator><creator>Wang, Hongsheng</creator><creator>Yin, Meng</creator><creator>Aldalbahi, Ali</creator><creator>El-Newehy, Mohamed</creator><creator>Mo, Xiumei</creator><creator>Wu, Jinglei</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4265-0701</orcidid><orcidid>https://orcid.org/0000-0003-0079-0236</orcidid><orcidid>https://orcid.org/0000-0001-9549-3992</orcidid></search><sort><creationdate>202005</creationdate><title>A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration</title><author>Liu, Xuezhe ; He, Xi ; Jin, Dawei ; Wu, Shuting ; Wang, Hongsheng ; Yin, Meng ; Aldalbahi, Ali ; El-Newehy, Mohamed ; Mo, Xiumei ; Wu, Jinglei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-65bb58faac1d1815837746f77afaf73aec84aaeead333127532ab7dd8016f8353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cell proliferation</topic><topic>Connective tissues</topic><topic>Degradation</topic><topic>Degradation products</topic><topic>Electrospinning</topic><topic>Epithelial cells</topic><topic>Fibroblasts</topic><topic>Gelatin</topic><topic>GTR</topic><topic>Guided Tissue Regeneration, Periodontal</topic><topic>Magnesium</topic><topic>Magnesium oxide</topic><topic>Magnesium oxide nanoparticles</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Multi-functions</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Periodontal diseases</topic><topic>Periodontal regeneration</topic><topic>Periodontium</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Rats</topic><topic>Regeneration</topic><topic>Structural stability</topic><topic>Superconductors (materials)</topic><topic>Tensile strength</topic><topic>Tissue engineering</topic><topic>Tissues</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xuezhe</creatorcontrib><creatorcontrib>He, Xi</creatorcontrib><creatorcontrib>Jin, Dawei</creatorcontrib><creatorcontrib>Wu, Shuting</creatorcontrib><creatorcontrib>Wang, Hongsheng</creatorcontrib><creatorcontrib>Yin, Meng</creatorcontrib><creatorcontrib>Aldalbahi, Ali</creatorcontrib><creatorcontrib>El-Newehy, Mohamed</creatorcontrib><creatorcontrib>Mo, Xiumei</creatorcontrib><creatorcontrib>Wu, Jinglei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xuezhe</au><au>He, Xi</au><au>Jin, Dawei</au><au>Wu, Shuting</au><au>Wang, Hongsheng</au><au>Yin, Meng</au><au>Aldalbahi, Ali</au><au>El-Newehy, Mohamed</au><au>Mo, Xiumei</au><au>Wu, Jinglei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2020-05</date><risdate>2020</risdate><volume>108</volume><spage>207</spage><epage>222</epage><pages>207-222</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Biomaterial-based membranes represent a promising therapeutic option for periodontal diseases. Although conventional periodontal membranes function greatly in preventing the ingrowth of both fibroblasts and epithelial cells as well as connective tissues, they are not capable of promoting periodontal tissue regeneration. Here, we report a multifunctional periodontal membrane prepared by electrospinning biodegradable polymers with magnesium oxide nanoparticles (nMgO). nMgO is a light metal-based nanoparticle with high antibacterial capacity and can be fully resorbed in the body. Our results showed that incorporating nMgO into poly(L-lactic acid) (PLA)/gelatin significantly improved the overall properties of membranes, including elevated tensile strength to maintain structural stability and adjusted degradation rate to fit the time window of periodontal regeneration. Acidic degradation products of PLA were neutralized by alkaline ions from nMgO hydrolysis, ameliorating pH microenvironment beneficial for cell proliferation. In vitro studies demonstrated considerable antibacterial and osteogenic properties of nMgO-incorporated membranes that are highly valuable for periodontal regeneration. Further investigations in a rat periodontal defect model revealed that nMgO-incorporated membranes effectively guided periodontal tissue regeneration. Taken together, our data indicate that nMgO-incorporated membranes might be a promising therapeutic option for periodontal regeneration.
Traditional clinical treatments of periodontal diseases largely focus on the management of the pathologic processes, which cannot effectively regenerate the lost periodontal tissue. GTR, a classic method for periodontal regeneration, has shown promise in clinical practice. However, the current membranes might not fully fulfill the criteria of ideal membranes. Here, we report bioabsorbable nMgO-incorporated nanofibrous membranes prepared by electrospinning to provide an alternative for the clinical practice of GTR. The membranes not only function greatly as physical barriers but also exhibit high antibacterial and osteoinductive properties. We therefore believe that this study will inspire more practice work on the development of effective GTR membranes for periodontal regeneration.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32251784</pmid><doi>10.1016/j.actbio.2020.03.044</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4265-0701</orcidid><orcidid>https://orcid.org/0000-0003-0079-0236</orcidid><orcidid>https://orcid.org/0000-0001-9549-3992</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2020-05, Vol.108, p.207-222 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_2387260204 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Biocompatible Materials - pharmacology Biodegradability Biodegradation Biomaterials Biomedical materials Cell proliferation Connective tissues Degradation Degradation products Electrospinning Epithelial cells Fibroblasts Gelatin GTR Guided Tissue Regeneration, Periodontal Magnesium Magnesium oxide Magnesium oxide nanoparticles Membranes Membranes, Artificial Multi-functions Nanofibers Nanoparticles Periodontal diseases Periodontal regeneration Periodontium Polylactic acid Polymers Rats Regeneration Structural stability Superconductors (materials) Tensile strength Tissue engineering Tissues Windows (intervals) |
title | A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20biodegradable%20multifunctional%20nanofibrous%20membrane%20for%20periodontal%20tissue%20regeneration&rft.jtitle=Acta%20biomaterialia&rft.au=Liu,%20Xuezhe&rft.date=2020-05&rft.volume=108&rft.spage=207&rft.epage=222&rft.pages=207-222&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2020.03.044&rft_dat=%3Cproquest_cross%3E2442616703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442616703&rft_id=info:pmid/32251784&rft_els_id=S1742706120301859&rfr_iscdi=true |