A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration

Biomaterial-based membranes represent a promising therapeutic option for periodontal diseases. Although conventional periodontal membranes function greatly in preventing the ingrowth of both fibroblasts and epithelial cells as well as connective tissues, they are not capable of promoting periodontal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2020-05, Vol.108, p.207-222
Hauptverfasser: Liu, Xuezhe, He, Xi, Jin, Dawei, Wu, Shuting, Wang, Hongsheng, Yin, Meng, Aldalbahi, Ali, El-Newehy, Mohamed, Mo, Xiumei, Wu, Jinglei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222
container_issue
container_start_page 207
container_title Acta biomaterialia
container_volume 108
creator Liu, Xuezhe
He, Xi
Jin, Dawei
Wu, Shuting
Wang, Hongsheng
Yin, Meng
Aldalbahi, Ali
El-Newehy, Mohamed
Mo, Xiumei
Wu, Jinglei
description Biomaterial-based membranes represent a promising therapeutic option for periodontal diseases. Although conventional periodontal membranes function greatly in preventing the ingrowth of both fibroblasts and epithelial cells as well as connective tissues, they are not capable of promoting periodontal tissue regeneration. Here, we report a multifunctional periodontal membrane prepared by electrospinning biodegradable polymers with magnesium oxide nanoparticles (nMgO). nMgO is a light metal-based nanoparticle with high antibacterial capacity and can be fully resorbed in the body. Our results showed that incorporating nMgO into poly(L-lactic acid) (PLA)/gelatin significantly improved the overall properties of membranes, including elevated tensile strength to maintain structural stability and adjusted degradation rate to fit the time window of periodontal regeneration. Acidic degradation products of PLA were neutralized by alkaline ions from nMgO hydrolysis, ameliorating pH microenvironment beneficial for cell proliferation. In vitro studies demonstrated considerable antibacterial and osteogenic properties of nMgO-incorporated membranes that are highly valuable for periodontal regeneration. Further investigations in a rat periodontal defect model revealed that nMgO-incorporated membranes effectively guided periodontal tissue regeneration. Taken together, our data indicate that nMgO-incorporated membranes might be a promising therapeutic option for periodontal regeneration. Traditional clinical treatments of periodontal diseases largely focus on the management of the pathologic processes, which cannot effectively regenerate the lost periodontal tissue. GTR, a classic method for periodontal regeneration, has shown promise in clinical practice. However, the current membranes might not fully fulfill the criteria of ideal membranes. Here, we report bioabsorbable nMgO-incorporated nanofibrous membranes prepared by electrospinning to provide an alternative for the clinical practice of GTR. The membranes not only function greatly as physical barriers but also exhibit high antibacterial and osteoinductive properties. We therefore believe that this study will inspire more practice work on the development of effective GTR membranes for periodontal regeneration. [Display omitted]
doi_str_mv 10.1016/j.actbio.2020.03.044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2387260204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706120301859</els_id><sourcerecordid>2442616703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-65bb58faac1d1815837746f77afaf73aec84aaeead333127532ab7dd8016f8353</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpab76D0ow5NKLHX3ZUi6BJbRpYSGXFnITY2kUtNjWRrID_ffR4k0POfQ0OjzvO6OHkK-MNoyy7nrXgJ37EBtOOW2oaKiUH8gp00rXqu30x_JWkteKduyEnOW8o1RoxvVnciI4b5nS8pQ8bqrS4fApgYN-wGpchjn4ZbJziBMM1QRT9KFPccnViGOfYMLKx1TtMZVgnOYCzSHnBauETzhhgkP0gnzyMGT8cpzn5M-P77_vftbbh_tfd5ttbcUNneuu7ftWewDLHNOs1UIp2XmlwINXAtBqCYAITgjBuGoFh145p4sCr0Urzsm3tXef4vOCeTZjyBaHodxZbjZcaMW7okgW9OoduotLKp8slJS8Y52iolBypWyKOSf0Zp_CCOmvYdQczJudWc2bg3lDhSnmS-zyWL70I7p_oTfVBbhdASw2XgImk23AyaILCe1sXAz_3_AKus-XZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442616703</pqid></control><display><type>article</type><title>A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Xuezhe ; He, Xi ; Jin, Dawei ; Wu, Shuting ; Wang, Hongsheng ; Yin, Meng ; Aldalbahi, Ali ; El-Newehy, Mohamed ; Mo, Xiumei ; Wu, Jinglei</creator><creatorcontrib>Liu, Xuezhe ; He, Xi ; Jin, Dawei ; Wu, Shuting ; Wang, Hongsheng ; Yin, Meng ; Aldalbahi, Ali ; El-Newehy, Mohamed ; Mo, Xiumei ; Wu, Jinglei</creatorcontrib><description>Biomaterial-based membranes represent a promising therapeutic option for periodontal diseases. Although conventional periodontal membranes function greatly in preventing the ingrowth of both fibroblasts and epithelial cells as well as connective tissues, they are not capable of promoting periodontal tissue regeneration. Here, we report a multifunctional periodontal membrane prepared by electrospinning biodegradable polymers with magnesium oxide nanoparticles (nMgO). nMgO is a light metal-based nanoparticle with high antibacterial capacity and can be fully resorbed in the body. Our results showed that incorporating nMgO into poly(L-lactic acid) (PLA)/gelatin significantly improved the overall properties of membranes, including elevated tensile strength to maintain structural stability and adjusted degradation rate to fit the time window of periodontal regeneration. Acidic degradation products of PLA were neutralized by alkaline ions from nMgO hydrolysis, ameliorating pH microenvironment beneficial for cell proliferation. In vitro studies demonstrated considerable antibacterial and osteogenic properties of nMgO-incorporated membranes that are highly valuable for periodontal regeneration. Further investigations in a rat periodontal defect model revealed that nMgO-incorporated membranes effectively guided periodontal tissue regeneration. Taken together, our data indicate that nMgO-incorporated membranes might be a promising therapeutic option for periodontal regeneration. Traditional clinical treatments of periodontal diseases largely focus on the management of the pathologic processes, which cannot effectively regenerate the lost periodontal tissue. GTR, a classic method for periodontal regeneration, has shown promise in clinical practice. However, the current membranes might not fully fulfill the criteria of ideal membranes. Here, we report bioabsorbable nMgO-incorporated nanofibrous membranes prepared by electrospinning to provide an alternative for the clinical practice of GTR. The membranes not only function greatly as physical barriers but also exhibit high antibacterial and osteoinductive properties. We therefore believe that this study will inspire more practice work on the development of effective GTR membranes for periodontal regeneration. [Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2020.03.044</identifier><identifier>PMID: 32251784</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Biocompatible Materials - pharmacology ; Biodegradability ; Biodegradation ; Biomaterials ; Biomedical materials ; Cell proliferation ; Connective tissues ; Degradation ; Degradation products ; Electrospinning ; Epithelial cells ; Fibroblasts ; Gelatin ; GTR ; Guided Tissue Regeneration, Periodontal ; Magnesium ; Magnesium oxide ; Magnesium oxide nanoparticles ; Membranes ; Membranes, Artificial ; Multi-functions ; Nanofibers ; Nanoparticles ; Periodontal diseases ; Periodontal regeneration ; Periodontium ; Polylactic acid ; Polymers ; Rats ; Regeneration ; Structural stability ; Superconductors (materials) ; Tensile strength ; Tissue engineering ; Tissues ; Windows (intervals)</subject><ispartof>Acta biomaterialia, 2020-05, Vol.108, p.207-222</ispartof><rights>2020</rights><rights>Copyright © 2020. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier BV May 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-65bb58faac1d1815837746f77afaf73aec84aaeead333127532ab7dd8016f8353</citedby><cites>FETCH-LOGICAL-c390t-65bb58faac1d1815837746f77afaf73aec84aaeead333127532ab7dd8016f8353</cites><orcidid>0000-0002-4265-0701 ; 0000-0003-0079-0236 ; 0000-0001-9549-3992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2020.03.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32251784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xuezhe</creatorcontrib><creatorcontrib>He, Xi</creatorcontrib><creatorcontrib>Jin, Dawei</creatorcontrib><creatorcontrib>Wu, Shuting</creatorcontrib><creatorcontrib>Wang, Hongsheng</creatorcontrib><creatorcontrib>Yin, Meng</creatorcontrib><creatorcontrib>Aldalbahi, Ali</creatorcontrib><creatorcontrib>El-Newehy, Mohamed</creatorcontrib><creatorcontrib>Mo, Xiumei</creatorcontrib><creatorcontrib>Wu, Jinglei</creatorcontrib><title>A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Biomaterial-based membranes represent a promising therapeutic option for periodontal diseases. Although conventional periodontal membranes function greatly in preventing the ingrowth of both fibroblasts and epithelial cells as well as connective tissues, they are not capable of promoting periodontal tissue regeneration. Here, we report a multifunctional periodontal membrane prepared by electrospinning biodegradable polymers with magnesium oxide nanoparticles (nMgO). nMgO is a light metal-based nanoparticle with high antibacterial capacity and can be fully resorbed in the body. Our results showed that incorporating nMgO into poly(L-lactic acid) (PLA)/gelatin significantly improved the overall properties of membranes, including elevated tensile strength to maintain structural stability and adjusted degradation rate to fit the time window of periodontal regeneration. Acidic degradation products of PLA were neutralized by alkaline ions from nMgO hydrolysis, ameliorating pH microenvironment beneficial for cell proliferation. In vitro studies demonstrated considerable antibacterial and osteogenic properties of nMgO-incorporated membranes that are highly valuable for periodontal regeneration. Further investigations in a rat periodontal defect model revealed that nMgO-incorporated membranes effectively guided periodontal tissue regeneration. Taken together, our data indicate that nMgO-incorporated membranes might be a promising therapeutic option for periodontal regeneration. Traditional clinical treatments of periodontal diseases largely focus on the management of the pathologic processes, which cannot effectively regenerate the lost periodontal tissue. GTR, a classic method for periodontal regeneration, has shown promise in clinical practice. However, the current membranes might not fully fulfill the criteria of ideal membranes. Here, we report bioabsorbable nMgO-incorporated nanofibrous membranes prepared by electrospinning to provide an alternative for the clinical practice of GTR. The membranes not only function greatly as physical barriers but also exhibit high antibacterial and osteoinductive properties. We therefore believe that this study will inspire more practice work on the development of effective GTR membranes for periodontal regeneration. [Display omitted]</description><subject>Animals</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cell proliferation</subject><subject>Connective tissues</subject><subject>Degradation</subject><subject>Degradation products</subject><subject>Electrospinning</subject><subject>Epithelial cells</subject><subject>Fibroblasts</subject><subject>Gelatin</subject><subject>GTR</subject><subject>Guided Tissue Regeneration, Periodontal</subject><subject>Magnesium</subject><subject>Magnesium oxide</subject><subject>Magnesium oxide nanoparticles</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Multi-functions</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Periodontal diseases</subject><subject>Periodontal regeneration</subject><subject>Periodontium</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Rats</subject><subject>Regeneration</subject><subject>Structural stability</subject><subject>Superconductors (materials)</subject><subject>Tensile strength</subject><subject>Tissue engineering</subject><subject>Tissues</subject><subject>Windows (intervals)</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1r3DAQhkVpab76D0ow5NKLHX3ZUi6BJbRpYSGXFnITY2kUtNjWRrID_ffR4k0POfQ0OjzvO6OHkK-MNoyy7nrXgJ37EBtOOW2oaKiUH8gp00rXqu30x_JWkteKduyEnOW8o1RoxvVnciI4b5nS8pQ8bqrS4fApgYN-wGpchjn4ZbJziBMM1QRT9KFPccnViGOfYMLKx1TtMZVgnOYCzSHnBauETzhhgkP0gnzyMGT8cpzn5M-P77_vftbbh_tfd5ttbcUNneuu7ftWewDLHNOs1UIp2XmlwINXAtBqCYAITgjBuGoFh145p4sCr0Urzsm3tXef4vOCeTZjyBaHodxZbjZcaMW7okgW9OoduotLKp8slJS8Y52iolBypWyKOSf0Zp_CCOmvYdQczJudWc2bg3lDhSnmS-zyWL70I7p_oTfVBbhdASw2XgImk23AyaILCe1sXAz_3_AKus-XZA</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Liu, Xuezhe</creator><creator>He, Xi</creator><creator>Jin, Dawei</creator><creator>Wu, Shuting</creator><creator>Wang, Hongsheng</creator><creator>Yin, Meng</creator><creator>Aldalbahi, Ali</creator><creator>El-Newehy, Mohamed</creator><creator>Mo, Xiumei</creator><creator>Wu, Jinglei</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4265-0701</orcidid><orcidid>https://orcid.org/0000-0003-0079-0236</orcidid><orcidid>https://orcid.org/0000-0001-9549-3992</orcidid></search><sort><creationdate>202005</creationdate><title>A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration</title><author>Liu, Xuezhe ; He, Xi ; Jin, Dawei ; Wu, Shuting ; Wang, Hongsheng ; Yin, Meng ; Aldalbahi, Ali ; El-Newehy, Mohamed ; Mo, Xiumei ; Wu, Jinglei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-65bb58faac1d1815837746f77afaf73aec84aaeead333127532ab7dd8016f8353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cell proliferation</topic><topic>Connective tissues</topic><topic>Degradation</topic><topic>Degradation products</topic><topic>Electrospinning</topic><topic>Epithelial cells</topic><topic>Fibroblasts</topic><topic>Gelatin</topic><topic>GTR</topic><topic>Guided Tissue Regeneration, Periodontal</topic><topic>Magnesium</topic><topic>Magnesium oxide</topic><topic>Magnesium oxide nanoparticles</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Multi-functions</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Periodontal diseases</topic><topic>Periodontal regeneration</topic><topic>Periodontium</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Rats</topic><topic>Regeneration</topic><topic>Structural stability</topic><topic>Superconductors (materials)</topic><topic>Tensile strength</topic><topic>Tissue engineering</topic><topic>Tissues</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xuezhe</creatorcontrib><creatorcontrib>He, Xi</creatorcontrib><creatorcontrib>Jin, Dawei</creatorcontrib><creatorcontrib>Wu, Shuting</creatorcontrib><creatorcontrib>Wang, Hongsheng</creatorcontrib><creatorcontrib>Yin, Meng</creatorcontrib><creatorcontrib>Aldalbahi, Ali</creatorcontrib><creatorcontrib>El-Newehy, Mohamed</creatorcontrib><creatorcontrib>Mo, Xiumei</creatorcontrib><creatorcontrib>Wu, Jinglei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xuezhe</au><au>He, Xi</au><au>Jin, Dawei</au><au>Wu, Shuting</au><au>Wang, Hongsheng</au><au>Yin, Meng</au><au>Aldalbahi, Ali</au><au>El-Newehy, Mohamed</au><au>Mo, Xiumei</au><au>Wu, Jinglei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2020-05</date><risdate>2020</risdate><volume>108</volume><spage>207</spage><epage>222</epage><pages>207-222</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Biomaterial-based membranes represent a promising therapeutic option for periodontal diseases. Although conventional periodontal membranes function greatly in preventing the ingrowth of both fibroblasts and epithelial cells as well as connective tissues, they are not capable of promoting periodontal tissue regeneration. Here, we report a multifunctional periodontal membrane prepared by electrospinning biodegradable polymers with magnesium oxide nanoparticles (nMgO). nMgO is a light metal-based nanoparticle with high antibacterial capacity and can be fully resorbed in the body. Our results showed that incorporating nMgO into poly(L-lactic acid) (PLA)/gelatin significantly improved the overall properties of membranes, including elevated tensile strength to maintain structural stability and adjusted degradation rate to fit the time window of periodontal regeneration. Acidic degradation products of PLA were neutralized by alkaline ions from nMgO hydrolysis, ameliorating pH microenvironment beneficial for cell proliferation. In vitro studies demonstrated considerable antibacterial and osteogenic properties of nMgO-incorporated membranes that are highly valuable for periodontal regeneration. Further investigations in a rat periodontal defect model revealed that nMgO-incorporated membranes effectively guided periodontal tissue regeneration. Taken together, our data indicate that nMgO-incorporated membranes might be a promising therapeutic option for periodontal regeneration. Traditional clinical treatments of periodontal diseases largely focus on the management of the pathologic processes, which cannot effectively regenerate the lost periodontal tissue. GTR, a classic method for periodontal regeneration, has shown promise in clinical practice. However, the current membranes might not fully fulfill the criteria of ideal membranes. Here, we report bioabsorbable nMgO-incorporated nanofibrous membranes prepared by electrospinning to provide an alternative for the clinical practice of GTR. The membranes not only function greatly as physical barriers but also exhibit high antibacterial and osteoinductive properties. We therefore believe that this study will inspire more practice work on the development of effective GTR membranes for periodontal regeneration. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32251784</pmid><doi>10.1016/j.actbio.2020.03.044</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4265-0701</orcidid><orcidid>https://orcid.org/0000-0003-0079-0236</orcidid><orcidid>https://orcid.org/0000-0001-9549-3992</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2020-05, Vol.108, p.207-222
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_2387260204
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Biocompatible Materials - pharmacology
Biodegradability
Biodegradation
Biomaterials
Biomedical materials
Cell proliferation
Connective tissues
Degradation
Degradation products
Electrospinning
Epithelial cells
Fibroblasts
Gelatin
GTR
Guided Tissue Regeneration, Periodontal
Magnesium
Magnesium oxide
Magnesium oxide nanoparticles
Membranes
Membranes, Artificial
Multi-functions
Nanofibers
Nanoparticles
Periodontal diseases
Periodontal regeneration
Periodontium
Polylactic acid
Polymers
Rats
Regeneration
Structural stability
Superconductors (materials)
Tensile strength
Tissue engineering
Tissues
Windows (intervals)
title A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20biodegradable%20multifunctional%20nanofibrous%20membrane%20for%20periodontal%20tissue%20regeneration&rft.jtitle=Acta%20biomaterialia&rft.au=Liu,%20Xuezhe&rft.date=2020-05&rft.volume=108&rft.spage=207&rft.epage=222&rft.pages=207-222&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2020.03.044&rft_dat=%3Cproquest_cross%3E2442616703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442616703&rft_id=info:pmid/32251784&rft_els_id=S1742706120301859&rfr_iscdi=true