Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives
Group 6 transition metal dichalcogenides (G6-TMDs), most notably MoS 2 , MoSe 2 , MoTe 2 , WS 2 and WSe 2 , constitute an important class of materials with a layered crystal structure. Various types of G6-TMD nanomaterials, such as nanosheets, nanotubes and quantum dot nano-objects and flower-like n...
Gespeichert in:
Veröffentlicht in: | Nanoscale horizons 2018-03, Vol.3 (2), p.9-24 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 2 |
container_start_page | 9 |
container_title | Nanoscale horizons |
container_volume | 3 |
creator | Samadi, Morasae Sarikhani, Navid Zirak, Mohammad Zhang, Hua Zhang, Hao-Li Moshfegh, Alireza Z |
description | Group 6 transition metal dichalcogenides (G6-TMDs), most notably MoS
2
, MoSe
2
, MoTe
2
, WS
2
and WSe
2
, constitute an important class of materials with a layered crystal structure. Various types of G6-TMD nanomaterials, such as nanosheets, nanotubes and quantum dot nano-objects and flower-like nanostructures, have been synthesized. High thermodynamic stability under ambient conditions, even in atomically thin form, made nanosheets of these inorganic semiconductors a valuable asset in the existing library of two-dimensional (2D) materials, along with the well-known semimetallic graphene and insulating hexagonal boron nitride. G6-TMDs generally possess an appropriate bandgap (1-2 eV) which is tunable by size and dimensionality and changes from indirect to direct in monolayer nanosheets, intriguing for (opto)electronic, sensing, and solar energy harvesting applications. Moreover, rich intercalation chemistry and abundance of catalytically active edge sites make them promising for fabrication of novel energy storage devices and advanced catalysts. In this review, we provide an overview on all aspects of the basic science, physicochemical properties and characterization techniques as well as all existing production methods and applications of G6-TMD nanomaterials in a comprehensive yet concise treatment. Particular emphasis is placed on establishing a linkage between the features of production methods and the specific needs of rapidly growing applications of G6-TMDs to develop a production-application selection guide. Based on this selection guide, a framework is suggested for future research on how to bridge existing knowledge gaps and improve current production methods towards technological application of G6-TMD nanomaterials.
Looking at the science and production methods of group 6 transition metal dichalcogenide (MoS
2
, WSe
2
,
etc.
) nanomaterials from the viewpoint of technological applications. |
doi_str_mv | 10.1039/c7nh00137a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2387258691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387258691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-f0ff43cd0a6f0003c4b830076dd502ff38a56934a65a3ae776d81967fc74d7033</originalsourceid><addsrcrecordid>eNpd0VFLHDEQB_AglXqoL323BPpSxLWTTTbZ7Zsc6gmHfWmflzGb9CK72TXJFvz2jd55gk8JzG-GYf6EfGFwyYA3P7TyGwDGFR6QRQlVVUglxaf9v5JH5DTGR8ioZqqp-WdyxMuyEqDYgtjbMM4TlTQF9NElN3o6mIQ97ZzeYK_Hv8a7zlCPfhwwmeCwjz9pfPZpY6KLFxSnqXcaX1ojRd9RO6c5GDqZECejk_tn4gk5tLnPnO7eY_Ln5vr3clWsf93eLa_WhRZCpMKCtYLrDlDavDDX4qHmAEp2XQWltbzGSjZcoKyQo1G5ULNGKquV6BRwfky-b-dOYXyaTUzt4KI2fY_ejHNsS16rsqplwzL99oE-jnPwebu2BAa1VExAVudbpcMYYzC2nYIbMDy3DNqXANqlul-9BnCV8dfdyPlhMN2evp07g7MtCFHvq-8J8v9CXop_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010867140</pqid></control><display><type>article</type><title>Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Samadi, Morasae ; Sarikhani, Navid ; Zirak, Mohammad ; Zhang, Hua ; Zhang, Hao-Li ; Moshfegh, Alireza Z</creator><creatorcontrib>Samadi, Morasae ; Sarikhani, Navid ; Zirak, Mohammad ; Zhang, Hua ; Zhang, Hao-Li ; Moshfegh, Alireza Z</creatorcontrib><description>Group 6 transition metal dichalcogenides (G6-TMDs), most notably MoS
2
, MoSe
2
, MoTe
2
, WS
2
and WSe
2
, constitute an important class of materials with a layered crystal structure. Various types of G6-TMD nanomaterials, such as nanosheets, nanotubes and quantum dot nano-objects and flower-like nanostructures, have been synthesized. High thermodynamic stability under ambient conditions, even in atomically thin form, made nanosheets of these inorganic semiconductors a valuable asset in the existing library of two-dimensional (2D) materials, along with the well-known semimetallic graphene and insulating hexagonal boron nitride. G6-TMDs generally possess an appropriate bandgap (1-2 eV) which is tunable by size and dimensionality and changes from indirect to direct in monolayer nanosheets, intriguing for (opto)electronic, sensing, and solar energy harvesting applications. Moreover, rich intercalation chemistry and abundance of catalytically active edge sites make them promising for fabrication of novel energy storage devices and advanced catalysts. In this review, we provide an overview on all aspects of the basic science, physicochemical properties and characterization techniques as well as all existing production methods and applications of G6-TMD nanomaterials in a comprehensive yet concise treatment. Particular emphasis is placed on establishing a linkage between the features of production methods and the specific needs of rapidly growing applications of G6-TMDs to develop a production-application selection guide. Based on this selection guide, a framework is suggested for future research on how to bridge existing knowledge gaps and improve current production methods towards technological application of G6-TMD nanomaterials.
Looking at the science and production methods of group 6 transition metal dichalcogenide (MoS
2
, WSe
2
,
etc.
) nanomaterials from the viewpoint of technological applications.</description><identifier>ISSN: 2055-6756</identifier><identifier>ISSN: 2055-6764</identifier><identifier>EISSN: 2055-6764</identifier><identifier>DOI: 10.1039/c7nh00137a</identifier><identifier>PMID: 32254071</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Boron nitride ; Chalcogenides ; Crystal structure ; Energy gap ; Energy harvesting ; Energy storage ; Molybdenum disulfide ; Nanomaterials ; Nanostructure ; Production methods ; Quantum dots ; Solar energy</subject><ispartof>Nanoscale horizons, 2018-03, Vol.3 (2), p.9-24</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-f0ff43cd0a6f0003c4b830076dd502ff38a56934a65a3ae776d81967fc74d7033</citedby><cites>FETCH-LOGICAL-c444t-f0ff43cd0a6f0003c4b830076dd502ff38a56934a65a3ae776d81967fc74d7033</cites><orcidid>0000-0001-9518-740X ; 0000-0002-6322-5202 ; 0000-0003-0216-1636 ; 0000-0003-0350-5306 ; 0000-0002-8770-1410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32254071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samadi, Morasae</creatorcontrib><creatorcontrib>Sarikhani, Navid</creatorcontrib><creatorcontrib>Zirak, Mohammad</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Zhang, Hao-Li</creatorcontrib><creatorcontrib>Moshfegh, Alireza Z</creatorcontrib><title>Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives</title><title>Nanoscale horizons</title><addtitle>Nanoscale Horiz</addtitle><description>Group 6 transition metal dichalcogenides (G6-TMDs), most notably MoS
2
, MoSe
2
, MoTe
2
, WS
2
and WSe
2
, constitute an important class of materials with a layered crystal structure. Various types of G6-TMD nanomaterials, such as nanosheets, nanotubes and quantum dot nano-objects and flower-like nanostructures, have been synthesized. High thermodynamic stability under ambient conditions, even in atomically thin form, made nanosheets of these inorganic semiconductors a valuable asset in the existing library of two-dimensional (2D) materials, along with the well-known semimetallic graphene and insulating hexagonal boron nitride. G6-TMDs generally possess an appropriate bandgap (1-2 eV) which is tunable by size and dimensionality and changes from indirect to direct in monolayer nanosheets, intriguing for (opto)electronic, sensing, and solar energy harvesting applications. Moreover, rich intercalation chemistry and abundance of catalytically active edge sites make them promising for fabrication of novel energy storage devices and advanced catalysts. In this review, we provide an overview on all aspects of the basic science, physicochemical properties and characterization techniques as well as all existing production methods and applications of G6-TMD nanomaterials in a comprehensive yet concise treatment. Particular emphasis is placed on establishing a linkage between the features of production methods and the specific needs of rapidly growing applications of G6-TMDs to develop a production-application selection guide. Based on this selection guide, a framework is suggested for future research on how to bridge existing knowledge gaps and improve current production methods towards technological application of G6-TMD nanomaterials.
Looking at the science and production methods of group 6 transition metal dichalcogenide (MoS
2
, WSe
2
,
etc.
) nanomaterials from the viewpoint of technological applications.</description><subject>Boron nitride</subject><subject>Chalcogenides</subject><subject>Crystal structure</subject><subject>Energy gap</subject><subject>Energy harvesting</subject><subject>Energy storage</subject><subject>Molybdenum disulfide</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Production methods</subject><subject>Quantum dots</subject><subject>Solar energy</subject><issn>2055-6756</issn><issn>2055-6764</issn><issn>2055-6764</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0VFLHDEQB_AglXqoL323BPpSxLWTTTbZ7Zsc6gmHfWmflzGb9CK72TXJFvz2jd55gk8JzG-GYf6EfGFwyYA3P7TyGwDGFR6QRQlVVUglxaf9v5JH5DTGR8ioZqqp-WdyxMuyEqDYgtjbMM4TlTQF9NElN3o6mIQ97ZzeYK_Hv8a7zlCPfhwwmeCwjz9pfPZpY6KLFxSnqXcaX1ojRd9RO6c5GDqZECejk_tn4gk5tLnPnO7eY_Ln5vr3clWsf93eLa_WhRZCpMKCtYLrDlDavDDX4qHmAEp2XQWltbzGSjZcoKyQo1G5ULNGKquV6BRwfky-b-dOYXyaTUzt4KI2fY_ejHNsS16rsqplwzL99oE-jnPwebu2BAa1VExAVudbpcMYYzC2nYIbMDy3DNqXANqlul-9BnCV8dfdyPlhMN2evp07g7MtCFHvq-8J8v9CXop_</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Samadi, Morasae</creator><creator>Sarikhani, Navid</creator><creator>Zirak, Mohammad</creator><creator>Zhang, Hua</creator><creator>Zhang, Hao-Li</creator><creator>Moshfegh, Alireza Z</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9518-740X</orcidid><orcidid>https://orcid.org/0000-0002-6322-5202</orcidid><orcidid>https://orcid.org/0000-0003-0216-1636</orcidid><orcidid>https://orcid.org/0000-0003-0350-5306</orcidid><orcidid>https://orcid.org/0000-0002-8770-1410</orcidid></search><sort><creationdate>20180301</creationdate><title>Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives</title><author>Samadi, Morasae ; Sarikhani, Navid ; Zirak, Mohammad ; Zhang, Hua ; Zhang, Hao-Li ; Moshfegh, Alireza Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-f0ff43cd0a6f0003c4b830076dd502ff38a56934a65a3ae776d81967fc74d7033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boron nitride</topic><topic>Chalcogenides</topic><topic>Crystal structure</topic><topic>Energy gap</topic><topic>Energy harvesting</topic><topic>Energy storage</topic><topic>Molybdenum disulfide</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Production methods</topic><topic>Quantum dots</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samadi, Morasae</creatorcontrib><creatorcontrib>Sarikhani, Navid</creatorcontrib><creatorcontrib>Zirak, Mohammad</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Zhang, Hao-Li</creatorcontrib><creatorcontrib>Moshfegh, Alireza Z</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samadi, Morasae</au><au>Sarikhani, Navid</au><au>Zirak, Mohammad</au><au>Zhang, Hua</au><au>Zhang, Hao-Li</au><au>Moshfegh, Alireza Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives</atitle><jtitle>Nanoscale horizons</jtitle><addtitle>Nanoscale Horiz</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>3</volume><issue>2</issue><spage>9</spage><epage>24</epage><pages>9-24</pages><issn>2055-6756</issn><issn>2055-6764</issn><eissn>2055-6764</eissn><abstract>Group 6 transition metal dichalcogenides (G6-TMDs), most notably MoS
2
, MoSe
2
, MoTe
2
, WS
2
and WSe
2
, constitute an important class of materials with a layered crystal structure. Various types of G6-TMD nanomaterials, such as nanosheets, nanotubes and quantum dot nano-objects and flower-like nanostructures, have been synthesized. High thermodynamic stability under ambient conditions, even in atomically thin form, made nanosheets of these inorganic semiconductors a valuable asset in the existing library of two-dimensional (2D) materials, along with the well-known semimetallic graphene and insulating hexagonal boron nitride. G6-TMDs generally possess an appropriate bandgap (1-2 eV) which is tunable by size and dimensionality and changes from indirect to direct in monolayer nanosheets, intriguing for (opto)electronic, sensing, and solar energy harvesting applications. Moreover, rich intercalation chemistry and abundance of catalytically active edge sites make them promising for fabrication of novel energy storage devices and advanced catalysts. In this review, we provide an overview on all aspects of the basic science, physicochemical properties and characterization techniques as well as all existing production methods and applications of G6-TMD nanomaterials in a comprehensive yet concise treatment. Particular emphasis is placed on establishing a linkage between the features of production methods and the specific needs of rapidly growing applications of G6-TMDs to develop a production-application selection guide. Based on this selection guide, a framework is suggested for future research on how to bridge existing knowledge gaps and improve current production methods towards technological application of G6-TMD nanomaterials.
Looking at the science and production methods of group 6 transition metal dichalcogenide (MoS
2
, WSe
2
,
etc.
) nanomaterials from the viewpoint of technological applications.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32254071</pmid><doi>10.1039/c7nh00137a</doi><tpages>115</tpages><orcidid>https://orcid.org/0000-0001-9518-740X</orcidid><orcidid>https://orcid.org/0000-0002-6322-5202</orcidid><orcidid>https://orcid.org/0000-0003-0216-1636</orcidid><orcidid>https://orcid.org/0000-0003-0350-5306</orcidid><orcidid>https://orcid.org/0000-0002-8770-1410</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2055-6756 |
ispartof | Nanoscale horizons, 2018-03, Vol.3 (2), p.9-24 |
issn | 2055-6756 2055-6764 2055-6764 |
language | eng |
recordid | cdi_proquest_miscellaneous_2387258691 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Boron nitride Chalcogenides Crystal structure Energy gap Energy harvesting Energy storage Molybdenum disulfide Nanomaterials Nanostructure Production methods Quantum dots Solar energy |
title | Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%206%20transition%20metal%20dichalcogenide%20nanomaterials:%20synthesis,%20applications%20and%20future%20perspectives&rft.jtitle=Nanoscale%20horizons&rft.au=Samadi,%20Morasae&rft.date=2018-03-01&rft.volume=3&rft.issue=2&rft.spage=9&rft.epage=24&rft.pages=9-24&rft.issn=2055-6756&rft.eissn=2055-6764&rft_id=info:doi/10.1039/c7nh00137a&rft_dat=%3Cproquest_pubme%3E2387258691%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010867140&rft_id=info:pmid/32254071&rfr_iscdi=true |