Emerging design strategies for constructing multiplex lateral flow test strip sensors
Conventional lateral flow test strip (LFTS) sensors are insufficiently accurate and reliable due to their single-target detection with limited sample information in a single test. The increasing demand for the simultaneous determination of multiple analytes has recently been accelerating the rapid d...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2020-06, Vol.157, p.112168-112168, Article 112168 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112168 |
---|---|
container_issue | |
container_start_page | 112168 |
container_title | Biosensors & bioelectronics |
container_volume | 157 |
creator | Wu, Yuhao Zhou, Yaofeng Leng, Yuankui Lai, Weihua Huang, Xiaolin Xiong, Yonghua |
description | Conventional lateral flow test strip (LFTS) sensors are insufficiently accurate and reliable due to their single-target detection with limited sample information in a single test. The increasing demand for the simultaneous determination of multiple analytes has recently been accelerating the rapid development of high-throughput and multiplexed LFTS sensing technologies. In this contribution, we systematically summarize the recent achievements on the design, development, and application of multiplexed LFTS sensors for improved rapid on-site diagnostics. The discussion focuses on emerging design strategies to increase multiplexing capacity for enhancing analytical efficiency and precision. As a proof-of-concept, several typical examples are presented. The advantages and disadvantages of such approaches are critically analyzed. Finally, we briefly discuss the current challenges and future perspectives.
[Display omitted]
•Emerging design strategies to develop multiplex lateral flow test strip sensors were systematically summarized.•The underlying principles of each design strategy were highlighted.•Several seminal examples for each strategy implemented for multiplexing were discussed.•The potential challenges and further perspectives in this field were elaborated. |
doi_str_mv | 10.1016/j.bios.2020.112168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2387255507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566320301664</els_id><sourcerecordid>2387255507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-fcd7932023502e6bf5439b2dc6047c128c16706d70734737760f57f989b5e7773</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMozjj6Ai6kSzcdc2mSFtzIMF5gwI2zDm16WjKkTU1aL29vS0eXrg4cvv_nnA-ha4LXBBNxd1gXxoU1xXRcEEpEeoKWJJUsTijjp2iJMy5iLgRboIsQDhhjSTJ8jhaMUo4zli7RftuAr01bRyUEU7dR6H3eQ20gRJXzkXbtuBl0PyHNYHvTWfiK7Mj43EaVdZ9RD6GfcqaLArTB-XCJzqrcBrg6zhXaP27fNs_x7vXpZfOwizXjoo8rXcqMjfczjimIouIJywpaaoETqQlNNRESi1JiyRLJpBS44rLK0qzgIKVkK3Q793bevQ_jGaoxQYO1eQtuCIqyVFLOOZ5QOqPauxA8VKrzpsn9tyJYTTrVQU061aRTzTrH0M2xfygaKP8iv_5G4H4GYPzyw4BXQRtoNZTGg-5V6cx__T8HOoYh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387255507</pqid></control><display><type>article</type><title>Emerging design strategies for constructing multiplex lateral flow test strip sensors</title><source>MEDLINE</source><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Wu, Yuhao ; Zhou, Yaofeng ; Leng, Yuankui ; Lai, Weihua ; Huang, Xiaolin ; Xiong, Yonghua</creator><creatorcontrib>Wu, Yuhao ; Zhou, Yaofeng ; Leng, Yuankui ; Lai, Weihua ; Huang, Xiaolin ; Xiong, Yonghua</creatorcontrib><description>Conventional lateral flow test strip (LFTS) sensors are insufficiently accurate and reliable due to their single-target detection with limited sample information in a single test. The increasing demand for the simultaneous determination of multiple analytes has recently been accelerating the rapid development of high-throughput and multiplexed LFTS sensing technologies. In this contribution, we systematically summarize the recent achievements on the design, development, and application of multiplexed LFTS sensors for improved rapid on-site diagnostics. The discussion focuses on emerging design strategies to increase multiplexing capacity for enhancing analytical efficiency and precision. As a proof-of-concept, several typical examples are presented. The advantages and disadvantages of such approaches are critically analyzed. Finally, we briefly discuss the current challenges and future perspectives.
[Display omitted]
•Emerging design strategies to develop multiplex lateral flow test strip sensors were systematically summarized.•The underlying principles of each design strategy were highlighted.•Several seminal examples for each strategy implemented for multiplexing were discussed.•The potential challenges and further perspectives in this field were elaborated.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2020.112168</identifier><identifier>PMID: 32250938</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Animals ; Biosensing Techniques - economics ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Equipment Design ; Humans ; Lateral flow test strip ; Microfluidic Analytical Techniques - economics ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Multiplexing ; On site ; Point-of-Care Testing - economics ; Rapid diagnostics ; Reagent Strips - analysis ; Reagent Strips - economics ; Sensor ; Time Factors</subject><ispartof>Biosensors & bioelectronics, 2020-06, Vol.157, p.112168-112168, Article 112168</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-fcd7932023502e6bf5439b2dc6047c128c16706d70734737760f57f989b5e7773</citedby><cites>FETCH-LOGICAL-c356t-fcd7932023502e6bf5439b2dc6047c128c16706d70734737760f57f989b5e7773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bios.2020.112168$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32250938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Yuhao</creatorcontrib><creatorcontrib>Zhou, Yaofeng</creatorcontrib><creatorcontrib>Leng, Yuankui</creatorcontrib><creatorcontrib>Lai, Weihua</creatorcontrib><creatorcontrib>Huang, Xiaolin</creatorcontrib><creatorcontrib>Xiong, Yonghua</creatorcontrib><title>Emerging design strategies for constructing multiplex lateral flow test strip sensors</title><title>Biosensors & bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Conventional lateral flow test strip (LFTS) sensors are insufficiently accurate and reliable due to their single-target detection with limited sample information in a single test. The increasing demand for the simultaneous determination of multiple analytes has recently been accelerating the rapid development of high-throughput and multiplexed LFTS sensing technologies. In this contribution, we systematically summarize the recent achievements on the design, development, and application of multiplexed LFTS sensors for improved rapid on-site diagnostics. The discussion focuses on emerging design strategies to increase multiplexing capacity for enhancing analytical efficiency and precision. As a proof-of-concept, several typical examples are presented. The advantages and disadvantages of such approaches are critically analyzed. Finally, we briefly discuss the current challenges and future perspectives.
[Display omitted]
•Emerging design strategies to develop multiplex lateral flow test strip sensors were systematically summarized.•The underlying principles of each design strategy were highlighted.•Several seminal examples for each strategy implemented for multiplexing were discussed.•The potential challenges and further perspectives in this field were elaborated.</description><subject>Animals</subject><subject>Biosensing Techniques - economics</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Equipment Design</subject><subject>Humans</subject><subject>Lateral flow test strip</subject><subject>Microfluidic Analytical Techniques - economics</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Multiplexing</subject><subject>On site</subject><subject>Point-of-Care Testing - economics</subject><subject>Rapid diagnostics</subject><subject>Reagent Strips - analysis</subject><subject>Reagent Strips - economics</subject><subject>Sensor</subject><subject>Time Factors</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxDAUhoMozjj6Ai6kSzcdc2mSFtzIMF5gwI2zDm16WjKkTU1aL29vS0eXrg4cvv_nnA-ha4LXBBNxd1gXxoU1xXRcEEpEeoKWJJUsTijjp2iJMy5iLgRboIsQDhhjSTJ8jhaMUo4zli7RftuAr01bRyUEU7dR6H3eQ20gRJXzkXbtuBl0PyHNYHvTWfiK7Mj43EaVdZ9RD6GfcqaLArTB-XCJzqrcBrg6zhXaP27fNs_x7vXpZfOwizXjoo8rXcqMjfczjimIouIJywpaaoETqQlNNRESi1JiyRLJpBS44rLK0qzgIKVkK3Q793bevQ_jGaoxQYO1eQtuCIqyVFLOOZ5QOqPauxA8VKrzpsn9tyJYTTrVQU061aRTzTrH0M2xfygaKP8iv_5G4H4GYPzyw4BXQRtoNZTGg-5V6cx__T8HOoYh</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Wu, Yuhao</creator><creator>Zhou, Yaofeng</creator><creator>Leng, Yuankui</creator><creator>Lai, Weihua</creator><creator>Huang, Xiaolin</creator><creator>Xiong, Yonghua</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200601</creationdate><title>Emerging design strategies for constructing multiplex lateral flow test strip sensors</title><author>Wu, Yuhao ; Zhou, Yaofeng ; Leng, Yuankui ; Lai, Weihua ; Huang, Xiaolin ; Xiong, Yonghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-fcd7932023502e6bf5439b2dc6047c128c16706d70734737760f57f989b5e7773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biosensing Techniques - economics</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Equipment Design</topic><topic>Humans</topic><topic>Lateral flow test strip</topic><topic>Microfluidic Analytical Techniques - economics</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Multiplexing</topic><topic>On site</topic><topic>Point-of-Care Testing - economics</topic><topic>Rapid diagnostics</topic><topic>Reagent Strips - analysis</topic><topic>Reagent Strips - economics</topic><topic>Sensor</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yuhao</creatorcontrib><creatorcontrib>Zhou, Yaofeng</creatorcontrib><creatorcontrib>Leng, Yuankui</creatorcontrib><creatorcontrib>Lai, Weihua</creatorcontrib><creatorcontrib>Huang, Xiaolin</creatorcontrib><creatorcontrib>Xiong, Yonghua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors & bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yuhao</au><au>Zhou, Yaofeng</au><au>Leng, Yuankui</au><au>Lai, Weihua</au><au>Huang, Xiaolin</au><au>Xiong, Yonghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emerging design strategies for constructing multiplex lateral flow test strip sensors</atitle><jtitle>Biosensors & bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>157</volume><spage>112168</spage><epage>112168</epage><pages>112168-112168</pages><artnum>112168</artnum><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Conventional lateral flow test strip (LFTS) sensors are insufficiently accurate and reliable due to their single-target detection with limited sample information in a single test. The increasing demand for the simultaneous determination of multiple analytes has recently been accelerating the rapid development of high-throughput and multiplexed LFTS sensing technologies. In this contribution, we systematically summarize the recent achievements on the design, development, and application of multiplexed LFTS sensors for improved rapid on-site diagnostics. The discussion focuses on emerging design strategies to increase multiplexing capacity for enhancing analytical efficiency and precision. As a proof-of-concept, several typical examples are presented. The advantages and disadvantages of such approaches are critically analyzed. Finally, we briefly discuss the current challenges and future perspectives.
[Display omitted]
•Emerging design strategies to develop multiplex lateral flow test strip sensors were systematically summarized.•The underlying principles of each design strategy were highlighted.•Several seminal examples for each strategy implemented for multiplexing were discussed.•The potential challenges and further perspectives in this field were elaborated.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>32250938</pmid><doi>10.1016/j.bios.2020.112168</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5663 |
ispartof | Biosensors & bioelectronics, 2020-06, Vol.157, p.112168-112168, Article 112168 |
issn | 0956-5663 1873-4235 |
language | eng |
recordid | cdi_proquest_miscellaneous_2387255507 |
source | MEDLINE; ScienceDirect Freedom Collection (Elsevier) |
subjects | Animals Biosensing Techniques - economics Biosensing Techniques - instrumentation Biosensing Techniques - methods Equipment Design Humans Lateral flow test strip Microfluidic Analytical Techniques - economics Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Multiplexing On site Point-of-Care Testing - economics Rapid diagnostics Reagent Strips - analysis Reagent Strips - economics Sensor Time Factors |
title | Emerging design strategies for constructing multiplex lateral flow test strip sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emerging%20design%20strategies%20for%20constructing%20multiplex%20lateral%20flow%20test%20strip%20sensors&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Wu,%20Yuhao&rft.date=2020-06-01&rft.volume=157&rft.spage=112168&rft.epage=112168&rft.pages=112168-112168&rft.artnum=112168&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2020.112168&rft_dat=%3Cproquest_cross%3E2387255507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387255507&rft_id=info:pmid/32250938&rft_els_id=S0956566320301664&rfr_iscdi=true |