Fabrication of an electroconductive, flexible, and soft poly(3,4-ethylenedioxythiophene)-thermoplastic polyurethane hybrid scaffold by in situ vapor phase polymerization

The inherent insolubility and brittleness of poly(3,4-ethylenedioxythiophene) (PEDOT) reduce its processability and practical applicability. Herein, we use in situ vapor phase polymerization (VPP) of 3,4-ethylenedioxythiophene (EDOT) on an oxidant-impregnated thermoplastic polyurethane (TPU) matrix...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2018-06, Vol.6 (24), p.4082-4088
Hauptverfasser: Park, Jin Seul, Kim, Boram, Lee, Byong-Taek, Choi, Jong Seob, Yim, Jin-Heong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4088
container_issue 24
container_start_page 4082
container_title Journal of materials chemistry. B, Materials for biology and medicine
container_volume 6
creator Park, Jin Seul
Kim, Boram
Lee, Byong-Taek
Choi, Jong Seob
Yim, Jin-Heong
description The inherent insolubility and brittleness of poly(3,4-ethylenedioxythiophene) (PEDOT) reduce its processability and practical applicability. Herein, we use in situ vapor phase polymerization (VPP) of 3,4-ethylenedioxythiophene (EDOT) on an oxidant-impregnated thermoplastic polyurethane (TPU) matrix comprising a three-dimensional silica particle assembly to produce a soft, flexible, and conductive TPU-PEDOT hybrid scaffold. The selective removal of silica yielded a highly porous (∼95%) skeletal structure, with the effective penetration, diffusion, and polymerization of EDOT resulting in uniform PEDOT formation both on the surface and the inner side of the TPU matrix. The mechanical and electrical properties of the obtained scaffold were investigated by bending, compression testing, and stress-strain and electrical measurements. The electrical resistance of the scaffold equaled 17 kΩ and did not change after ∼500-fold bending, whereas the observed elastic modulus was much lower (300 kPa) than that of TPU (3.3 MPa). In vitro biocompatibility was investigated by MC3T3-E1 cell culturing with cell viability evaluated using the WST assay and cell morphology examined by confocal microscopy. Thus, the soft and flexible TPU-PEDOT hybrid scaffold produced by VPP might be practically useful, implying that this preliminary investigation needs to be extended to study the behavior of muscle and nerve cells under electrical stimulation.
doi_str_mv 10.1039/c8tb00311d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2387254497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057237971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-9d96ae4923980cb6b55de84744596ac8a012ee9066ebb7b0a8e949d90066cb9c3</originalsourceid><addsrcrecordid>eNpdkcFuFiEUhYmxsU3bjQ9gSNxU06kwwAws66_VJk3c1MTdBJg7GRpmGIFpOr6Rbyn-rV3Ihnvhu4cTDkKvKbmghKkPVmZDCKO0f4GOaiJI1QoqXz7X5MchOk3pjpQlaSMZf4UOWV0LQQU9Qr-vtInO6uzCjMOA9YzBg80x2DD3q83uHs7x4OHBGV8qPfc4hSHjJfjtjJ3zCvK4eZihd-Fhy6MLy1i6d1UeIU5h8TplZ_f4GgurZ8DjVt4sOlYPQ_A9Nht2M04ur_heLyHiZdQJ9jMTRPdr7-4EHQzaJzh92o_R96vPt7uv1c23L9e7y5vKMipypXrVaOCqZkoSaxojRA-St5yLcmGlJrQGUKRpwJjWEC1B8TJEyok1yrJjdPaou8Twc4WUu8klC94X52FNXc1kWwvOVVvQt_-hd2GNc3HXld9va9aqlhbq_SNlY0gpwtAt0U06bh0l3d8Mu528_bjP8FOB3zxJrmaC_hn9lxj7A7IFmks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057237971</pqid></control><display><type>article</type><title>Fabrication of an electroconductive, flexible, and soft poly(3,4-ethylenedioxythiophene)-thermoplastic polyurethane hybrid scaffold by in situ vapor phase polymerization</title><source>Royal Society Of Chemistry Journals</source><creator>Park, Jin Seul ; Kim, Boram ; Lee, Byong-Taek ; Choi, Jong Seob ; Yim, Jin-Heong</creator><creatorcontrib>Park, Jin Seul ; Kim, Boram ; Lee, Byong-Taek ; Choi, Jong Seob ; Yim, Jin-Heong</creatorcontrib><description>The inherent insolubility and brittleness of poly(3,4-ethylenedioxythiophene) (PEDOT) reduce its processability and practical applicability. Herein, we use in situ vapor phase polymerization (VPP) of 3,4-ethylenedioxythiophene (EDOT) on an oxidant-impregnated thermoplastic polyurethane (TPU) matrix comprising a three-dimensional silica particle assembly to produce a soft, flexible, and conductive TPU-PEDOT hybrid scaffold. The selective removal of silica yielded a highly porous (∼95%) skeletal structure, with the effective penetration, diffusion, and polymerization of EDOT resulting in uniform PEDOT formation both on the surface and the inner side of the TPU matrix. The mechanical and electrical properties of the obtained scaffold were investigated by bending, compression testing, and stress-strain and electrical measurements. The electrical resistance of the scaffold equaled 17 kΩ and did not change after ∼500-fold bending, whereas the observed elastic modulus was much lower (300 kPa) than that of TPU (3.3 MPa). In vitro biocompatibility was investigated by MC3T3-E1 cell culturing with cell viability evaluated using the WST assay and cell morphology examined by confocal microscopy. Thus, the soft and flexible TPU-PEDOT hybrid scaffold produced by VPP might be practically useful, implying that this preliminary investigation needs to be extended to study the behavior of muscle and nerve cells under electrical stimulation.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/c8tb00311d</identifier><identifier>PMID: 32255151</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biocompatibility ; Cell morphology ; Compression ; Compression tests ; Confocal microscopy ; Cytology ; Electrical measurement ; Electrical properties ; Electrical stimuli ; Fabrication ; Investigations ; Mechanical properties ; Microscopy ; Modulus of elasticity ; Morphology ; Muscles ; Polymerization ; Polyurethane ; Polyurethane resins ; Scaffolds ; Silica ; Silicon dioxide ; Urethane thermoplastic elastomers ; Vapor phases ; Vapors</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2018-06, Vol.6 (24), p.4082-4088</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-9d96ae4923980cb6b55de84744596ac8a012ee9066ebb7b0a8e949d90066cb9c3</citedby><cites>FETCH-LOGICAL-c315t-9d96ae4923980cb6b55de84744596ac8a012ee9066ebb7b0a8e949d90066cb9c3</cites><orcidid>0000-0002-8402-7838 ; 0000-0002-3557-9564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32255151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Jin Seul</creatorcontrib><creatorcontrib>Kim, Boram</creatorcontrib><creatorcontrib>Lee, Byong-Taek</creatorcontrib><creatorcontrib>Choi, Jong Seob</creatorcontrib><creatorcontrib>Yim, Jin-Heong</creatorcontrib><title>Fabrication of an electroconductive, flexible, and soft poly(3,4-ethylenedioxythiophene)-thermoplastic polyurethane hybrid scaffold by in situ vapor phase polymerization</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>The inherent insolubility and brittleness of poly(3,4-ethylenedioxythiophene) (PEDOT) reduce its processability and practical applicability. Herein, we use in situ vapor phase polymerization (VPP) of 3,4-ethylenedioxythiophene (EDOT) on an oxidant-impregnated thermoplastic polyurethane (TPU) matrix comprising a three-dimensional silica particle assembly to produce a soft, flexible, and conductive TPU-PEDOT hybrid scaffold. The selective removal of silica yielded a highly porous (∼95%) skeletal structure, with the effective penetration, diffusion, and polymerization of EDOT resulting in uniform PEDOT formation both on the surface and the inner side of the TPU matrix. The mechanical and electrical properties of the obtained scaffold were investigated by bending, compression testing, and stress-strain and electrical measurements. The electrical resistance of the scaffold equaled 17 kΩ and did not change after ∼500-fold bending, whereas the observed elastic modulus was much lower (300 kPa) than that of TPU (3.3 MPa). In vitro biocompatibility was investigated by MC3T3-E1 cell culturing with cell viability evaluated using the WST assay and cell morphology examined by confocal microscopy. Thus, the soft and flexible TPU-PEDOT hybrid scaffold produced by VPP might be practically useful, implying that this preliminary investigation needs to be extended to study the behavior of muscle and nerve cells under electrical stimulation.</description><subject>Biocompatibility</subject><subject>Cell morphology</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Confocal microscopy</subject><subject>Cytology</subject><subject>Electrical measurement</subject><subject>Electrical properties</subject><subject>Electrical stimuli</subject><subject>Fabrication</subject><subject>Investigations</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Modulus of elasticity</subject><subject>Morphology</subject><subject>Muscles</subject><subject>Polymerization</subject><subject>Polyurethane</subject><subject>Polyurethane resins</subject><subject>Scaffolds</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Urethane thermoplastic elastomers</subject><subject>Vapor phases</subject><subject>Vapors</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkcFuFiEUhYmxsU3bjQ9gSNxU06kwwAws66_VJk3c1MTdBJg7GRpmGIFpOr6Rbyn-rV3Ihnvhu4cTDkKvKbmghKkPVmZDCKO0f4GOaiJI1QoqXz7X5MchOk3pjpQlaSMZf4UOWV0LQQU9Qr-vtInO6uzCjMOA9YzBg80x2DD3q83uHs7x4OHBGV8qPfc4hSHjJfjtjJ3zCvK4eZihd-Fhy6MLy1i6d1UeIU5h8TplZ_f4GgurZ8DjVt4sOlYPQ_A9Nht2M04ur_heLyHiZdQJ9jMTRPdr7-4EHQzaJzh92o_R96vPt7uv1c23L9e7y5vKMipypXrVaOCqZkoSaxojRA-St5yLcmGlJrQGUKRpwJjWEC1B8TJEyok1yrJjdPaou8Twc4WUu8klC94X52FNXc1kWwvOVVvQt_-hd2GNc3HXld9va9aqlhbq_SNlY0gpwtAt0U06bh0l3d8Mu528_bjP8FOB3zxJrmaC_hn9lxj7A7IFmks</recordid><startdate>20180628</startdate><enddate>20180628</enddate><creator>Park, Jin Seul</creator><creator>Kim, Boram</creator><creator>Lee, Byong-Taek</creator><creator>Choi, Jong Seob</creator><creator>Yim, Jin-Heong</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8402-7838</orcidid><orcidid>https://orcid.org/0000-0002-3557-9564</orcidid></search><sort><creationdate>20180628</creationdate><title>Fabrication of an electroconductive, flexible, and soft poly(3,4-ethylenedioxythiophene)-thermoplastic polyurethane hybrid scaffold by in situ vapor phase polymerization</title><author>Park, Jin Seul ; Kim, Boram ; Lee, Byong-Taek ; Choi, Jong Seob ; Yim, Jin-Heong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-9d96ae4923980cb6b55de84744596ac8a012ee9066ebb7b0a8e949d90066cb9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biocompatibility</topic><topic>Cell morphology</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Confocal microscopy</topic><topic>Cytology</topic><topic>Electrical measurement</topic><topic>Electrical properties</topic><topic>Electrical stimuli</topic><topic>Fabrication</topic><topic>Investigations</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Modulus of elasticity</topic><topic>Morphology</topic><topic>Muscles</topic><topic>Polymerization</topic><topic>Polyurethane</topic><topic>Polyurethane resins</topic><topic>Scaffolds</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Urethane thermoplastic elastomers</topic><topic>Vapor phases</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Jin Seul</creatorcontrib><creatorcontrib>Kim, Boram</creatorcontrib><creatorcontrib>Lee, Byong-Taek</creatorcontrib><creatorcontrib>Choi, Jong Seob</creatorcontrib><creatorcontrib>Yim, Jin-Heong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Jin Seul</au><au>Kim, Boram</au><au>Lee, Byong-Taek</au><au>Choi, Jong Seob</au><au>Yim, Jin-Heong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of an electroconductive, flexible, and soft poly(3,4-ethylenedioxythiophene)-thermoplastic polyurethane hybrid scaffold by in situ vapor phase polymerization</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2018-06-28</date><risdate>2018</risdate><volume>6</volume><issue>24</issue><spage>4082</spage><epage>4088</epage><pages>4082-4088</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>The inherent insolubility and brittleness of poly(3,4-ethylenedioxythiophene) (PEDOT) reduce its processability and practical applicability. Herein, we use in situ vapor phase polymerization (VPP) of 3,4-ethylenedioxythiophene (EDOT) on an oxidant-impregnated thermoplastic polyurethane (TPU) matrix comprising a three-dimensional silica particle assembly to produce a soft, flexible, and conductive TPU-PEDOT hybrid scaffold. The selective removal of silica yielded a highly porous (∼95%) skeletal structure, with the effective penetration, diffusion, and polymerization of EDOT resulting in uniform PEDOT formation both on the surface and the inner side of the TPU matrix. The mechanical and electrical properties of the obtained scaffold were investigated by bending, compression testing, and stress-strain and electrical measurements. The electrical resistance of the scaffold equaled 17 kΩ and did not change after ∼500-fold bending, whereas the observed elastic modulus was much lower (300 kPa) than that of TPU (3.3 MPa). In vitro biocompatibility was investigated by MC3T3-E1 cell culturing with cell viability evaluated using the WST assay and cell morphology examined by confocal microscopy. Thus, the soft and flexible TPU-PEDOT hybrid scaffold produced by VPP might be practically useful, implying that this preliminary investigation needs to be extended to study the behavior of muscle and nerve cells under electrical stimulation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32255151</pmid><doi>10.1039/c8tb00311d</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8402-7838</orcidid><orcidid>https://orcid.org/0000-0002-3557-9564</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-750X
ispartof Journal of materials chemistry. B, Materials for biology and medicine, 2018-06, Vol.6 (24), p.4082-4088
issn 2050-750X
2050-7518
language eng
recordid cdi_proquest_miscellaneous_2387254497
source Royal Society Of Chemistry Journals
subjects Biocompatibility
Cell morphology
Compression
Compression tests
Confocal microscopy
Cytology
Electrical measurement
Electrical properties
Electrical stimuli
Fabrication
Investigations
Mechanical properties
Microscopy
Modulus of elasticity
Morphology
Muscles
Polymerization
Polyurethane
Polyurethane resins
Scaffolds
Silica
Silicon dioxide
Urethane thermoplastic elastomers
Vapor phases
Vapors
title Fabrication of an electroconductive, flexible, and soft poly(3,4-ethylenedioxythiophene)-thermoplastic polyurethane hybrid scaffold by in situ vapor phase polymerization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A58%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20an%20electroconductive,%20flexible,%20and%20soft%20poly(3,4-ethylenedioxythiophene)-thermoplastic%20polyurethane%20hybrid%20scaffold%20by%20in%20situ%20vapor%20phase%20polymerization&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Park,%20Jin%20Seul&rft.date=2018-06-28&rft.volume=6&rft.issue=24&rft.spage=4082&rft.epage=4088&rft.pages=4082-4088&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/c8tb00311d&rft_dat=%3Cproquest_cross%3E2057237971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2057237971&rft_id=info:pmid/32255151&rfr_iscdi=true