Optimization of LiNO3–Mg(OH)2 composites as thermo-chemical energy storage materials

To reduce the emission of greenhouse gases, the substitution of fossil fuel by renewable energy sources is increasingly important. Matching energy supply and demand is however required, even more so if intermittent renewable energy sources are employed. Thermal energy storage then offers significant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management 2020-05, Vol.262, p.110258-110258, Article 110258
Hauptverfasser: Li, Shuo, Liu, Jia, Tan, Tianwei, Nie, Jiapei, Zhang, Huili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110258
container_issue
container_start_page 110258
container_title Journal of environmental management
container_volume 262
creator Li, Shuo
Liu, Jia
Tan, Tianwei
Nie, Jiapei
Zhang, Huili
description To reduce the emission of greenhouse gases, the substitution of fossil fuel by renewable energy sources is increasingly important. Matching energy supply and demand is however required, even more so if intermittent renewable energy sources are employed. Thermal energy storage then offers significant advantages. Thermo-chemical energy storage systems, using reversible reactions, have a high reaction enthalpy that exceeds the storage capacities of sensible and latent heat modes. Magnesium hydroxide is a candidate TCES material for such a system at temperature around 300 °C, and adaptable when doping Mg(OH)2 with metal salts. Both pure Mg(OH)2 and its composites with 1, 3, 6 and 10 wt% LiNO3 are studied. The present work validates this TCES process and develops reaction rate equations needed for its design. The LiNO3-doping significantly reduces the onset temperature of dehydration. For pure Mg(OH)2, the temperature is 325 °C. It is reduced to 289 °C when 1 wt% LiNO3 is present, and further reduced to 269 °C at a dosage of 10 wt% LiNO3. Whereas the dehydration of pure Mg(OH)2 is slow, with a rate constant k of 1.72 10−5 s−1 at 300 °C, adding increasing amounts of LiNO3 progressively increases the reaction rate constant to ~10−2 s−1 at 300 °C when 10 wt% LiNO3 is present. The kinetic expressions enable to predict the conversion yield and amount of heat stored or released for any desired temperature and selected duration of the heat-induced dehydration. LiNO3- doped Mg(OH)2 have a high potential in TCES applications when the heat source is available at temperatures between 250 and 400 °C, since the equilibrium temperature and the extent of de-hydration Mg(OH)2 can be tuned to the required temperature range by adding different wt% of LiNO3. •Energy recovery from industrial waste gas is of growing importance.•LiNO3 – doped Mg(OH)2 compounds are promising TCES materials.•Adding LiNO3 reduces net reaction heat but reaction temperature can be tuned.•The dehydration reaction rates are very fast when LiNO3 is added.•Defined TCES parameters are needed to design a heat storage and regeneration system.
doi_str_mv 10.1016/j.jenvman.2020.110258
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2387253529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301479720301936</els_id><sourcerecordid>2387253529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-b28c068d47951863a3e4758d520d2acf1e43d4e1f080b43157e740ddc89775ef3</originalsourceid><addsrcrecordid>eNqFkMFOwzAQRC0EEqXwCUg5lkPK2o7r5IRQBRSp0AtwtVxn07pK4mK7lcqJf-AP-RJStXdOI61mRrOPkGsKQwp0dLsarrDdNrodMmDdjQIT-QnpUShEmo84nJIecKBpJgt5Ti5CWAEAZ1T2yMdsHW1jv3S0rk1clUzt64z_fv-8LAazyQ1LjGvWLtiIIdEhiUv0jUvNEhtrdJ1gi36xS0J0Xi8waXREb3UdLslZ1QleHbVP3h8f3saTdDp7eh7fT1PDMxbTOcsNjPKyGyZot1RzzKTIS8GgZNpUFDNeZkgryGGecSokygzK0uSFlAIr3ieDQ-_au88NhqgaGwzWtW7RbYJiPJdMcMGKzioOVuNdCB4rtfa20X6nKKg9R7VSR45qz1EdOHa5u0MOuz-2Fr0KxmJrsLQeTVSls_80_AGl9H6d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387253529</pqid></control><display><type>article</type><title>Optimization of LiNO3–Mg(OH)2 composites as thermo-chemical energy storage materials</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Li, Shuo ; Liu, Jia ; Tan, Tianwei ; Nie, Jiapei ; Zhang, Huili</creator><creatorcontrib>Li, Shuo ; Liu, Jia ; Tan, Tianwei ; Nie, Jiapei ; Zhang, Huili</creatorcontrib><description>To reduce the emission of greenhouse gases, the substitution of fossil fuel by renewable energy sources is increasingly important. Matching energy supply and demand is however required, even more so if intermittent renewable energy sources are employed. Thermal energy storage then offers significant advantages. Thermo-chemical energy storage systems, using reversible reactions, have a high reaction enthalpy that exceeds the storage capacities of sensible and latent heat modes. Magnesium hydroxide is a candidate TCES material for such a system at temperature around 300 °C, and adaptable when doping Mg(OH)2 with metal salts. Both pure Mg(OH)2 and its composites with 1, 3, 6 and 10 wt% LiNO3 are studied. The present work validates this TCES process and develops reaction rate equations needed for its design. The LiNO3-doping significantly reduces the onset temperature of dehydration. For pure Mg(OH)2, the temperature is 325 °C. It is reduced to 289 °C when 1 wt% LiNO3 is present, and further reduced to 269 °C at a dosage of 10 wt% LiNO3. Whereas the dehydration of pure Mg(OH)2 is slow, with a rate constant k of 1.72 10−5 s−1 at 300 °C, adding increasing amounts of LiNO3 progressively increases the reaction rate constant to ~10−2 s−1 at 300 °C when 10 wt% LiNO3 is present. The kinetic expressions enable to predict the conversion yield and amount of heat stored or released for any desired temperature and selected duration of the heat-induced dehydration. LiNO3- doped Mg(OH)2 have a high potential in TCES applications when the heat source is available at temperatures between 250 and 400 °C, since the equilibrium temperature and the extent of de-hydration Mg(OH)2 can be tuned to the required temperature range by adding different wt% of LiNO3. •Energy recovery from industrial waste gas is of growing importance.•LiNO3 – doped Mg(OH)2 compounds are promising TCES materials.•Adding LiNO3 reduces net reaction heat but reaction temperature can be tuned.•The dehydration reaction rates are very fast when LiNO3 is added.•Defined TCES parameters are needed to design a heat storage and regeneration system.</description><identifier>ISSN: 0301-4797</identifier><identifier>EISSN: 1095-8630</identifier><identifier>DOI: 10.1016/j.jenvman.2020.110258</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Composites ; Lithium nitrate ; Magnesium hydroxide ; Thermo-chemical energy storage ; Waste and solar heat storage</subject><ispartof>Journal of environmental management, 2020-05, Vol.262, p.110258-110258, Article 110258</ispartof><rights>2020 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-b28c068d47951863a3e4758d520d2acf1e43d4e1f080b43157e740ddc89775ef3</citedby><cites>FETCH-LOGICAL-c342t-b28c068d47951863a3e4758d520d2acf1e43d4e1f080b43157e740ddc89775ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jenvman.2020.110258$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Li, Shuo</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Tan, Tianwei</creatorcontrib><creatorcontrib>Nie, Jiapei</creatorcontrib><creatorcontrib>Zhang, Huili</creatorcontrib><title>Optimization of LiNO3–Mg(OH)2 composites as thermo-chemical energy storage materials</title><title>Journal of environmental management</title><description>To reduce the emission of greenhouse gases, the substitution of fossil fuel by renewable energy sources is increasingly important. Matching energy supply and demand is however required, even more so if intermittent renewable energy sources are employed. Thermal energy storage then offers significant advantages. Thermo-chemical energy storage systems, using reversible reactions, have a high reaction enthalpy that exceeds the storage capacities of sensible and latent heat modes. Magnesium hydroxide is a candidate TCES material for such a system at temperature around 300 °C, and adaptable when doping Mg(OH)2 with metal salts. Both pure Mg(OH)2 and its composites with 1, 3, 6 and 10 wt% LiNO3 are studied. The present work validates this TCES process and develops reaction rate equations needed for its design. The LiNO3-doping significantly reduces the onset temperature of dehydration. For pure Mg(OH)2, the temperature is 325 °C. It is reduced to 289 °C when 1 wt% LiNO3 is present, and further reduced to 269 °C at a dosage of 10 wt% LiNO3. Whereas the dehydration of pure Mg(OH)2 is slow, with a rate constant k of 1.72 10−5 s−1 at 300 °C, adding increasing amounts of LiNO3 progressively increases the reaction rate constant to ~10−2 s−1 at 300 °C when 10 wt% LiNO3 is present. The kinetic expressions enable to predict the conversion yield and amount of heat stored or released for any desired temperature and selected duration of the heat-induced dehydration. LiNO3- doped Mg(OH)2 have a high potential in TCES applications when the heat source is available at temperatures between 250 and 400 °C, since the equilibrium temperature and the extent of de-hydration Mg(OH)2 can be tuned to the required temperature range by adding different wt% of LiNO3. •Energy recovery from industrial waste gas is of growing importance.•LiNO3 – doped Mg(OH)2 compounds are promising TCES materials.•Adding LiNO3 reduces net reaction heat but reaction temperature can be tuned.•The dehydration reaction rates are very fast when LiNO3 is added.•Defined TCES parameters are needed to design a heat storage and regeneration system.</description><subject>Composites</subject><subject>Lithium nitrate</subject><subject>Magnesium hydroxide</subject><subject>Thermo-chemical energy storage</subject><subject>Waste and solar heat storage</subject><issn>0301-4797</issn><issn>1095-8630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwzAQRC0EEqXwCUg5lkPK2o7r5IRQBRSp0AtwtVxn07pK4mK7lcqJf-AP-RJStXdOI61mRrOPkGsKQwp0dLsarrDdNrodMmDdjQIT-QnpUShEmo84nJIecKBpJgt5Ti5CWAEAZ1T2yMdsHW1jv3S0rk1clUzt64z_fv-8LAazyQ1LjGvWLtiIIdEhiUv0jUvNEhtrdJ1gi36xS0J0Xi8waXREb3UdLslZ1QleHbVP3h8f3saTdDp7eh7fT1PDMxbTOcsNjPKyGyZot1RzzKTIS8GgZNpUFDNeZkgryGGecSokygzK0uSFlAIr3ieDQ-_au88NhqgaGwzWtW7RbYJiPJdMcMGKzioOVuNdCB4rtfa20X6nKKg9R7VSR45qz1EdOHa5u0MOuz-2Fr0KxmJrsLQeTVSls_80_AGl9H6d</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Li, Shuo</creator><creator>Liu, Jia</creator><creator>Tan, Tianwei</creator><creator>Nie, Jiapei</creator><creator>Zhang, Huili</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200515</creationdate><title>Optimization of LiNO3–Mg(OH)2 composites as thermo-chemical energy storage materials</title><author>Li, Shuo ; Liu, Jia ; Tan, Tianwei ; Nie, Jiapei ; Zhang, Huili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-b28c068d47951863a3e4758d520d2acf1e43d4e1f080b43157e740ddc89775ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Composites</topic><topic>Lithium nitrate</topic><topic>Magnesium hydroxide</topic><topic>Thermo-chemical energy storage</topic><topic>Waste and solar heat storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shuo</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Tan, Tianwei</creatorcontrib><creatorcontrib>Nie, Jiapei</creatorcontrib><creatorcontrib>Zhang, Huili</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of environmental management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shuo</au><au>Liu, Jia</au><au>Tan, Tianwei</au><au>Nie, Jiapei</au><au>Zhang, Huili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of LiNO3–Mg(OH)2 composites as thermo-chemical energy storage materials</atitle><jtitle>Journal of environmental management</jtitle><date>2020-05-15</date><risdate>2020</risdate><volume>262</volume><spage>110258</spage><epage>110258</epage><pages>110258-110258</pages><artnum>110258</artnum><issn>0301-4797</issn><eissn>1095-8630</eissn><abstract>To reduce the emission of greenhouse gases, the substitution of fossil fuel by renewable energy sources is increasingly important. Matching energy supply and demand is however required, even more so if intermittent renewable energy sources are employed. Thermal energy storage then offers significant advantages. Thermo-chemical energy storage systems, using reversible reactions, have a high reaction enthalpy that exceeds the storage capacities of sensible and latent heat modes. Magnesium hydroxide is a candidate TCES material for such a system at temperature around 300 °C, and adaptable when doping Mg(OH)2 with metal salts. Both pure Mg(OH)2 and its composites with 1, 3, 6 and 10 wt% LiNO3 are studied. The present work validates this TCES process and develops reaction rate equations needed for its design. The LiNO3-doping significantly reduces the onset temperature of dehydration. For pure Mg(OH)2, the temperature is 325 °C. It is reduced to 289 °C when 1 wt% LiNO3 is present, and further reduced to 269 °C at a dosage of 10 wt% LiNO3. Whereas the dehydration of pure Mg(OH)2 is slow, with a rate constant k of 1.72 10−5 s−1 at 300 °C, adding increasing amounts of LiNO3 progressively increases the reaction rate constant to ~10−2 s−1 at 300 °C when 10 wt% LiNO3 is present. The kinetic expressions enable to predict the conversion yield and amount of heat stored or released for any desired temperature and selected duration of the heat-induced dehydration. LiNO3- doped Mg(OH)2 have a high potential in TCES applications when the heat source is available at temperatures between 250 and 400 °C, since the equilibrium temperature and the extent of de-hydration Mg(OH)2 can be tuned to the required temperature range by adding different wt% of LiNO3. •Energy recovery from industrial waste gas is of growing importance.•LiNO3 – doped Mg(OH)2 compounds are promising TCES materials.•Adding LiNO3 reduces net reaction heat but reaction temperature can be tuned.•The dehydration reaction rates are very fast when LiNO3 is added.•Defined TCES parameters are needed to design a heat storage and regeneration system.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jenvman.2020.110258</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-4797
ispartof Journal of environmental management, 2020-05, Vol.262, p.110258-110258, Article 110258
issn 0301-4797
1095-8630
language eng
recordid cdi_proquest_miscellaneous_2387253529
source ScienceDirect Freedom Collection (Elsevier)
subjects Composites
Lithium nitrate
Magnesium hydroxide
Thermo-chemical energy storage
Waste and solar heat storage
title Optimization of LiNO3–Mg(OH)2 composites as thermo-chemical energy storage materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20LiNO3%E2%80%93Mg(OH)2%20composites%20as%20thermo-chemical%20energy%20storage%20materials&rft.jtitle=Journal%20of%20environmental%20management&rft.au=Li,%20Shuo&rft.date=2020-05-15&rft.volume=262&rft.spage=110258&rft.epage=110258&rft.pages=110258-110258&rft.artnum=110258&rft.issn=0301-4797&rft.eissn=1095-8630&rft_id=info:doi/10.1016/j.jenvman.2020.110258&rft_dat=%3Cproquest_cross%3E2387253529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387253529&rft_id=info:pmid/&rft_els_id=S0301479720301936&rfr_iscdi=true