Success probabilities for second guessers

Two people independently and with the same distribution guess the location of an unseen object in n-dimensional space, and the one whose guess is closer to the unseen object is declared the winner. The first person announces his guess, but the second modifies his unspoken idea by moving his guess in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 1980-12, Vol.17 (4), p.1133-1137
1. Verfasser: Pittenger, A. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1137
container_issue 4
container_start_page 1133
container_title Journal of applied probability
container_volume 17
creator Pittenger, A. O.
description Two people independently and with the same distribution guess the location of an unseen object in n-dimensional space, and the one whose guess is closer to the unseen object is declared the winner. The first person announces his guess, but the second modifies his unspoken idea by moving his guess in the direction of the first guess and as close to it as possible. It is shown that if the distribution of guesses is rotationally symmetric about the true location of the unseen object, ¾ is the sharp lower bound for the success probability of the second guesser. If the distribution is fixed and the dimension increases, then for a certain class of distributions, the success probability approaches 1.
doi_str_mv 10.2307/3213227
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_23867488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_2307_3213227</cupid><jstor_id>3213227</jstor_id><sourcerecordid>3213227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-46f7fbd7e8047c8683fd24331ff3247a1518cca3cb9a9666db15fdca776535be3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7iX-hClFlU82qSLmUYHzDgQl2HJE2Gls5kzG0X_nsj7U5wc-_ifpxz7kHomuB7yrB8YJQwSuUJWhAuq1JgSU_RAmNKyjrPc3QB0GFMeFXLBVq9j855gOKYojW27duh9VCEmArwLh6aYjfms09wic6C6cFfzXuJPp82H-uXcvv2_Lp-3JaO8noouQgy2EZ6hbl0SigWGsoZIyEwyqUhFVHOGeZsbWohRGNJFRpnpBQVq6xnS3Q76eZEX9l70PsWnO97c_BxBE2ZEpIrlcG7CXQpAiQf9DG1e5O-NcH6two9V5HJm4nsYIjpH2w1C5q9TW2z87qLYzrkb_-wP1cqZ6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23867488</pqid></control><display><type>article</type><title>Success probabilities for second guessers</title><source>JSTOR</source><source>JSTOR Mathematics &amp; Business</source><creator>Pittenger, A. O.</creator><creatorcontrib>Pittenger, A. O.</creatorcontrib><description>Two people independently and with the same distribution guess the location of an unseen object in n-dimensional space, and the one whose guess is closer to the unseen object is declared the winner. The first person announces his guess, but the second modifies his unspoken idea by moving his guess in the direction of the first guess and as close to it as possible. It is shown that if the distribution of guesses is rotationally symmetric about the true location of the unseen object, ¾ is the sharp lower bound for the success probability of the second guesser. If the distribution is fixed and the dimension increases, then for a certain class of distributions, the success probability approaches 1.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.2307/3213227</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Mathematical objects ; Short Communications</subject><ispartof>Journal of applied probability, 1980-12, Vol.17 (4), p.1133-1137</ispartof><rights>Copyright © Applied Probability Trust</rights><rights>Copyright 1980 Applied Probability Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-46f7fbd7e8047c8683fd24331ff3247a1518cca3cb9a9666db15fdca776535be3</citedby><cites>FETCH-LOGICAL-c249t-46f7fbd7e8047c8683fd24331ff3247a1518cca3cb9a9666db15fdca776535be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3213227$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3213227$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Pittenger, A. O.</creatorcontrib><title>Success probabilities for second guessers</title><title>Journal of applied probability</title><addtitle>Journal of Applied Probability</addtitle><description>Two people independently and with the same distribution guess the location of an unseen object in n-dimensional space, and the one whose guess is closer to the unseen object is declared the winner. The first person announces his guess, but the second modifies his unspoken idea by moving his guess in the direction of the first guess and as close to it as possible. It is shown that if the distribution of guesses is rotationally symmetric about the true location of the unseen object, ¾ is the sharp lower bound for the success probability of the second guesser. If the distribution is fixed and the dimension increases, then for a certain class of distributions, the success probability approaches 1.</description><subject>Mathematical objects</subject><subject>Short Communications</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7iX-hClFlU82qSLmUYHzDgQl2HJE2Gls5kzG0X_nsj7U5wc-_ifpxz7kHomuB7yrB8YJQwSuUJWhAuq1JgSU_RAmNKyjrPc3QB0GFMeFXLBVq9j855gOKYojW27duh9VCEmArwLh6aYjfms09wic6C6cFfzXuJPp82H-uXcvv2_Lp-3JaO8noouQgy2EZ6hbl0SigWGsoZIyEwyqUhFVHOGeZsbWohRGNJFRpnpBQVq6xnS3Q76eZEX9l70PsWnO97c_BxBE2ZEpIrlcG7CXQpAiQf9DG1e5O-NcH6two9V5HJm4nsYIjpH2w1C5q9TW2z87qLYzrkb_-wP1cqZ6w</recordid><startdate>19801201</startdate><enddate>19801201</enddate><creator>Pittenger, A. O.</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19801201</creationdate><title>Success probabilities for second guessers</title><author>Pittenger, A. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-46f7fbd7e8047c8683fd24331ff3247a1518cca3cb9a9666db15fdca776535be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>Mathematical objects</topic><topic>Short Communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pittenger, A. O.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pittenger, A. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Success probabilities for second guessers</atitle><jtitle>Journal of applied probability</jtitle><addtitle>Journal of Applied Probability</addtitle><date>1980-12-01</date><risdate>1980</risdate><volume>17</volume><issue>4</issue><spage>1133</spage><epage>1137</epage><pages>1133-1137</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>Two people independently and with the same distribution guess the location of an unseen object in n-dimensional space, and the one whose guess is closer to the unseen object is declared the winner. The first person announces his guess, but the second modifies his unspoken idea by moving his guess in the direction of the first guess and as close to it as possible. It is shown that if the distribution of guesses is rotationally symmetric about the true location of the unseen object, ¾ is the sharp lower bound for the success probability of the second guesser. If the distribution is fixed and the dimension increases, then for a certain class of distributions, the success probability approaches 1.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.2307/3213227</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 1980-12, Vol.17 (4), p.1133-1137
issn 0021-9002
1475-6072
language eng
recordid cdi_proquest_miscellaneous_23867488
source JSTOR; JSTOR Mathematics & Business
subjects Mathematical objects
Short Communications
title Success probabilities for second guessers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Success%20probabilities%20for%20second%20guessers&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Pittenger,%20A.%20O.&rft.date=1980-12-01&rft.volume=17&rft.issue=4&rft.spage=1133&rft.epage=1137&rft.pages=1133-1137&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.2307/3213227&rft_dat=%3Cjstor_proqu%3E3213227%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23867488&rft_id=info:pmid/&rft_cupid=10_2307_3213227&rft_jstor_id=3213227&rfr_iscdi=true