Success probabilities for second guessers
Two people independently and with the same distribution guess the location of an unseen object in n-dimensional space, and the one whose guess is closer to the unseen object is declared the winner. The first person announces his guess, but the second modifies his unspoken idea by moving his guess in...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 1980-12, Vol.17 (4), p.1133-1137 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1137 |
---|---|
container_issue | 4 |
container_start_page | 1133 |
container_title | Journal of applied probability |
container_volume | 17 |
creator | Pittenger, A. O. |
description | Two people independently and with the same distribution guess the location of an unseen object in n-dimensional space, and the one whose guess is closer to the unseen object is declared the winner. The first person announces his guess, but the second modifies his unspoken idea by moving his guess in the direction of the first guess and as close to it as possible. It is shown that if the distribution of guesses is rotationally symmetric about the true location of the unseen object, ¾ is the sharp lower bound for the success probability of the second guesser. If the distribution is fixed and the dimension increases, then for a certain class of distributions, the success probability approaches 1. |
doi_str_mv | 10.2307/3213227 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_23867488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_2307_3213227</cupid><jstor_id>3213227</jstor_id><sourcerecordid>3213227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-46f7fbd7e8047c8683fd24331ff3247a1518cca3cb9a9666db15fdca776535be3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7iX-hClFlU82qSLmUYHzDgQl2HJE2Gls5kzG0X_nsj7U5wc-_ifpxz7kHomuB7yrB8YJQwSuUJWhAuq1JgSU_RAmNKyjrPc3QB0GFMeFXLBVq9j855gOKYojW27duh9VCEmArwLh6aYjfms09wic6C6cFfzXuJPp82H-uXcvv2_Lp-3JaO8noouQgy2EZ6hbl0SigWGsoZIyEwyqUhFVHOGeZsbWohRGNJFRpnpBQVq6xnS3Q76eZEX9l70PsWnO97c_BxBE2ZEpIrlcG7CXQpAiQf9DG1e5O-NcH6two9V5HJm4nsYIjpH2w1C5q9TW2z87qLYzrkb_-wP1cqZ6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23867488</pqid></control><display><type>article</type><title>Success probabilities for second guessers</title><source>JSTOR</source><source>JSTOR Mathematics & Business</source><creator>Pittenger, A. O.</creator><creatorcontrib>Pittenger, A. O.</creatorcontrib><description>Two people independently and with the same distribution guess the location of an unseen object in n-dimensional space, and the one whose guess is closer to the unseen object is declared the winner. The first person announces his guess, but the second modifies his unspoken idea by moving his guess in the direction of the first guess and as close to it as possible. It is shown that if the distribution of guesses is rotationally symmetric about the true location of the unseen object, ¾ is the sharp lower bound for the success probability of the second guesser. If the distribution is fixed and the dimension increases, then for a certain class of distributions, the success probability approaches 1.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.2307/3213227</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Mathematical objects ; Short Communications</subject><ispartof>Journal of applied probability, 1980-12, Vol.17 (4), p.1133-1137</ispartof><rights>Copyright © Applied Probability Trust</rights><rights>Copyright 1980 Applied Probability Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-46f7fbd7e8047c8683fd24331ff3247a1518cca3cb9a9666db15fdca776535be3</citedby><cites>FETCH-LOGICAL-c249t-46f7fbd7e8047c8683fd24331ff3247a1518cca3cb9a9666db15fdca776535be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3213227$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3213227$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Pittenger, A. O.</creatorcontrib><title>Success probabilities for second guessers</title><title>Journal of applied probability</title><addtitle>Journal of Applied Probability</addtitle><description>Two people independently and with the same distribution guess the location of an unseen object in n-dimensional space, and the one whose guess is closer to the unseen object is declared the winner. The first person announces his guess, but the second modifies his unspoken idea by moving his guess in the direction of the first guess and as close to it as possible. It is shown that if the distribution of guesses is rotationally symmetric about the true location of the unseen object, ¾ is the sharp lower bound for the success probability of the second guesser. If the distribution is fixed and the dimension increases, then for a certain class of distributions, the success probability approaches 1.</description><subject>Mathematical objects</subject><subject>Short Communications</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7iX-hClFlU82qSLmUYHzDgQl2HJE2Gls5kzG0X_nsj7U5wc-_ifpxz7kHomuB7yrB8YJQwSuUJWhAuq1JgSU_RAmNKyjrPc3QB0GFMeFXLBVq9j855gOKYojW27duh9VCEmArwLh6aYjfms09wic6C6cFfzXuJPp82H-uXcvv2_Lp-3JaO8noouQgy2EZ6hbl0SigWGsoZIyEwyqUhFVHOGeZsbWohRGNJFRpnpBQVq6xnS3Q76eZEX9l70PsWnO97c_BxBE2ZEpIrlcG7CXQpAiQf9DG1e5O-NcH6two9V5HJm4nsYIjpH2w1C5q9TW2z87qLYzrkb_-wP1cqZ6w</recordid><startdate>19801201</startdate><enddate>19801201</enddate><creator>Pittenger, A. O.</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19801201</creationdate><title>Success probabilities for second guessers</title><author>Pittenger, A. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-46f7fbd7e8047c8683fd24331ff3247a1518cca3cb9a9666db15fdca776535be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>Mathematical objects</topic><topic>Short Communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pittenger, A. O.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pittenger, A. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Success probabilities for second guessers</atitle><jtitle>Journal of applied probability</jtitle><addtitle>Journal of Applied Probability</addtitle><date>1980-12-01</date><risdate>1980</risdate><volume>17</volume><issue>4</issue><spage>1133</spage><epage>1137</epage><pages>1133-1137</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>Two people independently and with the same distribution guess the location of an unseen object in n-dimensional space, and the one whose guess is closer to the unseen object is declared the winner. The first person announces his guess, but the second modifies his unspoken idea by moving his guess in the direction of the first guess and as close to it as possible. It is shown that if the distribution of guesses is rotationally symmetric about the true location of the unseen object, ¾ is the sharp lower bound for the success probability of the second guesser. If the distribution is fixed and the dimension increases, then for a certain class of distributions, the success probability approaches 1.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.2307/3213227</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9002 |
ispartof | Journal of applied probability, 1980-12, Vol.17 (4), p.1133-1137 |
issn | 0021-9002 1475-6072 |
language | eng |
recordid | cdi_proquest_miscellaneous_23867488 |
source | JSTOR; JSTOR Mathematics & Business |
subjects | Mathematical objects Short Communications |
title | Success probabilities for second guessers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Success%20probabilities%20for%20second%20guessers&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Pittenger,%20A.%20O.&rft.date=1980-12-01&rft.volume=17&rft.issue=4&rft.spage=1133&rft.epage=1137&rft.pages=1133-1137&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.2307/3213227&rft_dat=%3Cjstor_proqu%3E3213227%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23867488&rft_id=info:pmid/&rft_cupid=10_2307_3213227&rft_jstor_id=3213227&rfr_iscdi=true |