Retrieving the Coassembly Pathway of Composite Cellulose Nanocrystal Photonic Films from their Angular Optical Response

Aqueous suspensions of cellulose nanocrystals (CNCs) are known to self‐assemble into a chiral nematic liquid crystalline phase, leading to solid‐state nanostructured colored films upon solvent evaporation, even in the presence of templating agents. The angular optical response of these structures, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-05, Vol.32 (19), p.e1906889-n/a
Hauptverfasser: Frka‐Petesic, Bruno, Kelly, Joel A., Jacucci, Gianni, Guidetti, Giulia, Kamita, Gen, Crossette, Nathan P., Hamad, Wadood Y., MacLachlan, Mark J., Vignolini, Silvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page e1906889
container_title Advanced materials (Weinheim)
container_volume 32
creator Frka‐Petesic, Bruno
Kelly, Joel A.
Jacucci, Gianni
Guidetti, Giulia
Kamita, Gen
Crossette, Nathan P.
Hamad, Wadood Y.
MacLachlan, Mark J.
Vignolini, Silvia
description Aqueous suspensions of cellulose nanocrystals (CNCs) are known to self‐assemble into a chiral nematic liquid crystalline phase, leading to solid‐state nanostructured colored films upon solvent evaporation, even in the presence of templating agents. The angular optical response of these structures, and therefore their visual appearance, are completely determined by the spatial arrangement of the CNCs when the drying suspension undergoes a transition from a flowing and liquid crystalline state to a kinetically arrested state. Here, it is demonstrated how the angular response of the final film allows for retrieval of key physical properties and the chemical composition of the suspension at the onset of the kinetic arrest, thus capturing a snapshot of the past. To illustrate this methodology, a dynamically evolving sol–gel coassembly process is investigated by adding various amounts of organosilica precursor, namely, 1,2‐bis(trimethoxysilyl)ethane. The influence of organosilica condensation on the kinetic arrest can be tracked and thus explains the angular response of the resulting films. The a posteriori and in situ approach is general; it can be applied to a variety of additives in CNC‐based films and it allows access to key rheological information of the suspension without using any dedicated rheological technique. The angular responses of photonic cellulose nanocrystal‐based films are investigated and related to the kinetic arrest transition occurring in the suspension upon solvent evaporation during the early stages of the film formation. How addition of sol–gel organosilica precursor to the suspension alters the resulting angular response, through a delayed kinetic arrest and a reduced vertical collapse of the structure, is elucidated.
doi_str_mv 10.1002/adma.201906889
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2386451018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400314102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4509-fdd71222fd68134a7acf7ca1d6ad17e930e95982481af88e089e457fb6d4b3ee3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQRi0EotvClSOyxIVLlrHjJPZxtVCKVGhVwdnyJuOuKycOdsIq_x6vthSJC6eRZt48zegj5A2DNQPgH0zXmzUHpqCWUj0jK1ZxVghQ1XOyAlVWhaqFPCPnKT0AgKqhfknOSs6FEpKtyOEOp-jwlxvu6bRHug0mJex3fqG3ZtofzEKDzd1-DMlNeY7ezz4kpN_MENq4pMl4ersPUxhcSy-d7xO1MfRHm4t0M9zP3kR6M06uzeQdpjEMCV-RF9b4hK8f6wX5cfnp-_aquL75_GW7uS5aUYEqbNc1jHNuu1qyUpjGtLZpDetq07EGVQmoKiV5_sVYKRGkQlE1dld3Ylcilhfk_ck7xvBzxjTp3qU2P2EGDHPSvJS1qBgwmdF3_6APYY5Dvk5zAVAywYBnan2i2hhSimj1GF1v4qIZ6GMk-hiJfookL7x91M67Hrsn_E8GGVAn4OA8Lv_R6c3Hr5u_8t8JspmD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400314102</pqid></control><display><type>article</type><title>Retrieving the Coassembly Pathway of Composite Cellulose Nanocrystal Photonic Films from their Angular Optical Response</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Frka‐Petesic, Bruno ; Kelly, Joel A. ; Jacucci, Gianni ; Guidetti, Giulia ; Kamita, Gen ; Crossette, Nathan P. ; Hamad, Wadood Y. ; MacLachlan, Mark J. ; Vignolini, Silvia</creator><creatorcontrib>Frka‐Petesic, Bruno ; Kelly, Joel A. ; Jacucci, Gianni ; Guidetti, Giulia ; Kamita, Gen ; Crossette, Nathan P. ; Hamad, Wadood Y. ; MacLachlan, Mark J. ; Vignolini, Silvia</creatorcontrib><description>Aqueous suspensions of cellulose nanocrystals (CNCs) are known to self‐assemble into a chiral nematic liquid crystalline phase, leading to solid‐state nanostructured colored films upon solvent evaporation, even in the presence of templating agents. The angular optical response of these structures, and therefore their visual appearance, are completely determined by the spatial arrangement of the CNCs when the drying suspension undergoes a transition from a flowing and liquid crystalline state to a kinetically arrested state. Here, it is demonstrated how the angular response of the final film allows for retrieval of key physical properties and the chemical composition of the suspension at the onset of the kinetic arrest, thus capturing a snapshot of the past. To illustrate this methodology, a dynamically evolving sol–gel coassembly process is investigated by adding various amounts of organosilica precursor, namely, 1,2‐bis(trimethoxysilyl)ethane. The influence of organosilica condensation on the kinetic arrest can be tracked and thus explains the angular response of the resulting films. The a posteriori and in situ approach is general; it can be applied to a variety of additives in CNC‐based films and it allows access to key rheological information of the suspension without using any dedicated rheological technique. The angular responses of photonic cellulose nanocrystal‐based films are investigated and related to the kinetic arrest transition occurring in the suspension upon solvent evaporation during the early stages of the film formation. How addition of sol–gel organosilica precursor to the suspension alters the resulting angular response, through a delayed kinetic arrest and a reduced vertical collapse of the structure, is elucidated.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201906889</identifier><identifier>PMID: 32249481</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Additives ; Cellulose ; cellulose nanocrystals ; Chemical composition ; cholesterics ; colloidal self‐assembly ; Crystal structure ; Crystallinity ; drying dispersions ; Ethane ; Liquid crystals ; Materials science ; Nanocrystals ; Nematic crystals ; photonic structures ; Physical properties ; Rheological properties ; Rheology ; Sol-gel processes</subject><ispartof>Advanced materials (Weinheim), 2020-05, Vol.32 (19), p.e1906889-n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 The Authors. Published by WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4509-fdd71222fd68134a7acf7ca1d6ad17e930e95982481af88e089e457fb6d4b3ee3</citedby><cites>FETCH-LOGICAL-c4509-fdd71222fd68134a7acf7ca1d6ad17e930e95982481af88e089e457fb6d4b3ee3</cites><orcidid>0000-0002-6065-3359 ; 0000-0002-9156-0876 ; 0000-0003-0664-1418 ; 0000-0002-3546-7132 ; 0000-0001-5002-5685 ; 0000-0003-1376-5865 ; 0000-0002-9879-6072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201906889$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201906889$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32249481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frka‐Petesic, Bruno</creatorcontrib><creatorcontrib>Kelly, Joel A.</creatorcontrib><creatorcontrib>Jacucci, Gianni</creatorcontrib><creatorcontrib>Guidetti, Giulia</creatorcontrib><creatorcontrib>Kamita, Gen</creatorcontrib><creatorcontrib>Crossette, Nathan P.</creatorcontrib><creatorcontrib>Hamad, Wadood Y.</creatorcontrib><creatorcontrib>MacLachlan, Mark J.</creatorcontrib><creatorcontrib>Vignolini, Silvia</creatorcontrib><title>Retrieving the Coassembly Pathway of Composite Cellulose Nanocrystal Photonic Films from their Angular Optical Response</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Aqueous suspensions of cellulose nanocrystals (CNCs) are known to self‐assemble into a chiral nematic liquid crystalline phase, leading to solid‐state nanostructured colored films upon solvent evaporation, even in the presence of templating agents. The angular optical response of these structures, and therefore their visual appearance, are completely determined by the spatial arrangement of the CNCs when the drying suspension undergoes a transition from a flowing and liquid crystalline state to a kinetically arrested state. Here, it is demonstrated how the angular response of the final film allows for retrieval of key physical properties and the chemical composition of the suspension at the onset of the kinetic arrest, thus capturing a snapshot of the past. To illustrate this methodology, a dynamically evolving sol–gel coassembly process is investigated by adding various amounts of organosilica precursor, namely, 1,2‐bis(trimethoxysilyl)ethane. The influence of organosilica condensation on the kinetic arrest can be tracked and thus explains the angular response of the resulting films. The a posteriori and in situ approach is general; it can be applied to a variety of additives in CNC‐based films and it allows access to key rheological information of the suspension without using any dedicated rheological technique. The angular responses of photonic cellulose nanocrystal‐based films are investigated and related to the kinetic arrest transition occurring in the suspension upon solvent evaporation during the early stages of the film formation. How addition of sol–gel organosilica precursor to the suspension alters the resulting angular response, through a delayed kinetic arrest and a reduced vertical collapse of the structure, is elucidated.</description><subject>Additives</subject><subject>Cellulose</subject><subject>cellulose nanocrystals</subject><subject>Chemical composition</subject><subject>cholesterics</subject><subject>colloidal self‐assembly</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>drying dispersions</subject><subject>Ethane</subject><subject>Liquid crystals</subject><subject>Materials science</subject><subject>Nanocrystals</subject><subject>Nematic crystals</subject><subject>photonic structures</subject><subject>Physical properties</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Sol-gel processes</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkUFv1DAQRi0EotvClSOyxIVLlrHjJPZxtVCKVGhVwdnyJuOuKycOdsIq_x6vthSJC6eRZt48zegj5A2DNQPgH0zXmzUHpqCWUj0jK1ZxVghQ1XOyAlVWhaqFPCPnKT0AgKqhfknOSs6FEpKtyOEOp-jwlxvu6bRHug0mJex3fqG3ZtofzEKDzd1-DMlNeY7ezz4kpN_MENq4pMl4ersPUxhcSy-d7xO1MfRHm4t0M9zP3kR6M06uzeQdpjEMCV-RF9b4hK8f6wX5cfnp-_aquL75_GW7uS5aUYEqbNc1jHNuu1qyUpjGtLZpDetq07EGVQmoKiV5_sVYKRGkQlE1dld3Ylcilhfk_ck7xvBzxjTp3qU2P2EGDHPSvJS1qBgwmdF3_6APYY5Dvk5zAVAywYBnan2i2hhSimj1GF1v4qIZ6GMk-hiJfookL7x91M67Hrsn_E8GGVAn4OA8Lv_R6c3Hr5u_8t8JspmD</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Frka‐Petesic, Bruno</creator><creator>Kelly, Joel A.</creator><creator>Jacucci, Gianni</creator><creator>Guidetti, Giulia</creator><creator>Kamita, Gen</creator><creator>Crossette, Nathan P.</creator><creator>Hamad, Wadood Y.</creator><creator>MacLachlan, Mark J.</creator><creator>Vignolini, Silvia</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6065-3359</orcidid><orcidid>https://orcid.org/0000-0002-9156-0876</orcidid><orcidid>https://orcid.org/0000-0003-0664-1418</orcidid><orcidid>https://orcid.org/0000-0002-3546-7132</orcidid><orcidid>https://orcid.org/0000-0001-5002-5685</orcidid><orcidid>https://orcid.org/0000-0003-1376-5865</orcidid><orcidid>https://orcid.org/0000-0002-9879-6072</orcidid></search><sort><creationdate>20200501</creationdate><title>Retrieving the Coassembly Pathway of Composite Cellulose Nanocrystal Photonic Films from their Angular Optical Response</title><author>Frka‐Petesic, Bruno ; Kelly, Joel A. ; Jacucci, Gianni ; Guidetti, Giulia ; Kamita, Gen ; Crossette, Nathan P. ; Hamad, Wadood Y. ; MacLachlan, Mark J. ; Vignolini, Silvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4509-fdd71222fd68134a7acf7ca1d6ad17e930e95982481af88e089e457fb6d4b3ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additives</topic><topic>Cellulose</topic><topic>cellulose nanocrystals</topic><topic>Chemical composition</topic><topic>cholesterics</topic><topic>colloidal self‐assembly</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>drying dispersions</topic><topic>Ethane</topic><topic>Liquid crystals</topic><topic>Materials science</topic><topic>Nanocrystals</topic><topic>Nematic crystals</topic><topic>photonic structures</topic><topic>Physical properties</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Sol-gel processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frka‐Petesic, Bruno</creatorcontrib><creatorcontrib>Kelly, Joel A.</creatorcontrib><creatorcontrib>Jacucci, Gianni</creatorcontrib><creatorcontrib>Guidetti, Giulia</creatorcontrib><creatorcontrib>Kamita, Gen</creatorcontrib><creatorcontrib>Crossette, Nathan P.</creatorcontrib><creatorcontrib>Hamad, Wadood Y.</creatorcontrib><creatorcontrib>MacLachlan, Mark J.</creatorcontrib><creatorcontrib>Vignolini, Silvia</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frka‐Petesic, Bruno</au><au>Kelly, Joel A.</au><au>Jacucci, Gianni</au><au>Guidetti, Giulia</au><au>Kamita, Gen</au><au>Crossette, Nathan P.</au><au>Hamad, Wadood Y.</au><au>MacLachlan, Mark J.</au><au>Vignolini, Silvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retrieving the Coassembly Pathway of Composite Cellulose Nanocrystal Photonic Films from their Angular Optical Response</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>32</volume><issue>19</issue><spage>e1906889</spage><epage>n/a</epage><pages>e1906889-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Aqueous suspensions of cellulose nanocrystals (CNCs) are known to self‐assemble into a chiral nematic liquid crystalline phase, leading to solid‐state nanostructured colored films upon solvent evaporation, even in the presence of templating agents. The angular optical response of these structures, and therefore their visual appearance, are completely determined by the spatial arrangement of the CNCs when the drying suspension undergoes a transition from a flowing and liquid crystalline state to a kinetically arrested state. Here, it is demonstrated how the angular response of the final film allows for retrieval of key physical properties and the chemical composition of the suspension at the onset of the kinetic arrest, thus capturing a snapshot of the past. To illustrate this methodology, a dynamically evolving sol–gel coassembly process is investigated by adding various amounts of organosilica precursor, namely, 1,2‐bis(trimethoxysilyl)ethane. The influence of organosilica condensation on the kinetic arrest can be tracked and thus explains the angular response of the resulting films. The a posteriori and in situ approach is general; it can be applied to a variety of additives in CNC‐based films and it allows access to key rheological information of the suspension without using any dedicated rheological technique. The angular responses of photonic cellulose nanocrystal‐based films are investigated and related to the kinetic arrest transition occurring in the suspension upon solvent evaporation during the early stages of the film formation. How addition of sol–gel organosilica precursor to the suspension alters the resulting angular response, through a delayed kinetic arrest and a reduced vertical collapse of the structure, is elucidated.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32249481</pmid><doi>10.1002/adma.201906889</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6065-3359</orcidid><orcidid>https://orcid.org/0000-0002-9156-0876</orcidid><orcidid>https://orcid.org/0000-0003-0664-1418</orcidid><orcidid>https://orcid.org/0000-0002-3546-7132</orcidid><orcidid>https://orcid.org/0000-0001-5002-5685</orcidid><orcidid>https://orcid.org/0000-0003-1376-5865</orcidid><orcidid>https://orcid.org/0000-0002-9879-6072</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-05, Vol.32 (19), p.e1906889-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2386451018
source Wiley Online Library Journals Frontfile Complete
subjects Additives
Cellulose
cellulose nanocrystals
Chemical composition
cholesterics
colloidal self‐assembly
Crystal structure
Crystallinity
drying dispersions
Ethane
Liquid crystals
Materials science
Nanocrystals
Nematic crystals
photonic structures
Physical properties
Rheological properties
Rheology
Sol-gel processes
title Retrieving the Coassembly Pathway of Composite Cellulose Nanocrystal Photonic Films from their Angular Optical Response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A07%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retrieving%20the%20Coassembly%20Pathway%20of%20Composite%20Cellulose%20Nanocrystal%20Photonic%20Films%20from%20their%20Angular%20Optical%20Response&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Frka%E2%80%90Petesic,%20Bruno&rft.date=2020-05-01&rft.volume=32&rft.issue=19&rft.spage=e1906889&rft.epage=n/a&rft.pages=e1906889-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201906889&rft_dat=%3Cproquest_cross%3E2400314102%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400314102&rft_id=info:pmid/32249481&rfr_iscdi=true