Evaluating Scalable Uncertainty Estimation Methods for Deep Learning-Based Molecular Property Prediction

Advances in deep neural network (DNN)-based molecular property prediction have recently led to the development of models of remarkable accuracy and generalization ability, with graph convolutional neural networks (GCNNs) reporting state-of-the-art performance for this task. However, some challenges...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2020-06, Vol.60 (6), p.2697-2717
Hauptverfasser: Scalia, Gabriele, Grambow, Colin A, Pernici, Barbara, Li, Yi-Pei, Green, William H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!