Heterogeneous genetic invasions of three insecticide resistance mutations in Indo‐Pacific populations of Aedes aegypti (L.)

Nations throughout the Indo‐Pacific region use pyrethroid insecticides to control Aedes aegypti, the mosquito vector of dengue, often without knowledge of pyrethroid resistance status of the pest or origin of resistance. Two mutations (V1016G + F1534C) in the sodium channel gene (Vssc) of Ae. aegypt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2020-05, Vol.29 (9), p.1628-1641
Hauptverfasser: Endersby‐Harshman, Nancy M., Schmidt, Thomas L., Chung, Jessica, Rooyen, Anthony, Weeks, Andrew R., Hoffmann, Ary A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1641
container_issue 9
container_start_page 1628
container_title Molecular ecology
container_volume 29
creator Endersby‐Harshman, Nancy M.
Schmidt, Thomas L.
Chung, Jessica
Rooyen, Anthony
Weeks, Andrew R.
Hoffmann, Ary A.
description Nations throughout the Indo‐Pacific region use pyrethroid insecticides to control Aedes aegypti, the mosquito vector of dengue, often without knowledge of pyrethroid resistance status of the pest or origin of resistance. Two mutations (V1016G + F1534C) in the sodium channel gene (Vssc) of Ae. aegypti modify ion channel function and cause target‐site resistance to pyrethroid insecticides, with a third mutation (S989P) having a potential additive effect. Of 27 possible genotypes involving these mutations, some allelic combinations are never seen whereas others predominate. Here, five allelic combinations common in Ae. aegypti from the Indo‐Pacific region are described and their geographical distributions investigated using genome‐wide SNP markers. We tested the hypothesis that resistance allele combinations evolved de novo in populations versus the alternative that dispersal of Ae. aegypti between populations facilitated genetic invasions of allele combinations. We used latent factor mixed‐models to detect SNPs throughout the genome that showed structuring in line with resistance allele combinations and compared variation at SNPs within the Vssc gene with genome‐wide variation. Mixed‐models detected an array of SNPs linked to resistance allele combinations, all located within or in close proximity to the Vssc gene. Variation at SNPs within the Vssc gene was structured by resistance profile, whereas genome‐wide SNPs were structured by population. These results demonstrate that alleles near to resistance mutations have been transferred between populations via linked selection. This indicates that genetic invasions have contributed to the widespread occurrence of Vssc allele combinations in Ae. aegypti in the Indo‐Pacific region, pointing to undocumented mosquito invasions between countries.
doi_str_mv 10.1111/mec.15430
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2386284695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409963027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4540-3fb5b97e028e90b76768e118ab621071432a9a144530f0dbd31319cd0fb729db3</originalsourceid><addsrcrecordid>eNp1kc9q3DAQh0VpabZpD3mBIOglOXij_7aOYUmbwJb20EJvQpbHiYJtOZKdsIdAH6HP2CepsrvNIdC5DMx8fMzwQ-iIkiXNddaDW1IpOHmFFpQrWTAtfr5GC6IVKyip-AF6l9ItIZQzKd-iA86YUFKwBXq8hAliuIYBwpzwU5-8w364t8mHIeHQ4ukmAuRRApd3vgEcIfk02cEB7ufJTlvSD_hqaMKfX7-_WefbbBnDOHf7bfacQwMJW7jejJPHJ-vl6Xv0prVdgg_7foh-fLr4vros1l8_X63O14UTUpCCt7WsdQmEVaBJXapSVUBpZWvFKCmp4MxqS4WQnLSkqRtOOdWuIW1dMt3U_BCd7LxjDHczpMn0PjnoOrt92zBeKVYJpWVGP75Ab8Mch3ydYYJorThhZaZOd5SLIaUIrRmj723cGErMUyYmZ2K2mWT2eG-c6x6aZ_JfCBk42wEPvoPN_03my8Vqp_wLFoqWjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409963027</pqid></control><display><type>article</type><title>Heterogeneous genetic invasions of three insecticide resistance mutations in Indo‐Pacific populations of Aedes aegypti (L.)</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Endersby‐Harshman, Nancy M. ; Schmidt, Thomas L. ; Chung, Jessica ; Rooyen, Anthony ; Weeks, Andrew R. ; Hoffmann, Ary A.</creator><creatorcontrib>Endersby‐Harshman, Nancy M. ; Schmidt, Thomas L. ; Chung, Jessica ; Rooyen, Anthony ; Weeks, Andrew R. ; Hoffmann, Ary A.</creatorcontrib><description>Nations throughout the Indo‐Pacific region use pyrethroid insecticides to control Aedes aegypti, the mosquito vector of dengue, often without knowledge of pyrethroid resistance status of the pest or origin of resistance. Two mutations (V1016G + F1534C) in the sodium channel gene (Vssc) of Ae. aegypti modify ion channel function and cause target‐site resistance to pyrethroid insecticides, with a third mutation (S989P) having a potential additive effect. Of 27 possible genotypes involving these mutations, some allelic combinations are never seen whereas others predominate. Here, five allelic combinations common in Ae. aegypti from the Indo‐Pacific region are described and their geographical distributions investigated using genome‐wide SNP markers. We tested the hypothesis that resistance allele combinations evolved de novo in populations versus the alternative that dispersal of Ae. aegypti between populations facilitated genetic invasions of allele combinations. We used latent factor mixed‐models to detect SNPs throughout the genome that showed structuring in line with resistance allele combinations and compared variation at SNPs within the Vssc gene with genome‐wide variation. Mixed‐models detected an array of SNPs linked to resistance allele combinations, all located within or in close proximity to the Vssc gene. Variation at SNPs within the Vssc gene was structured by resistance profile, whereas genome‐wide SNPs were structured by population. These results demonstrate that alleles near to resistance mutations have been transferred between populations via linked selection. This indicates that genetic invasions have contributed to the widespread occurrence of Vssc allele combinations in Ae. aegypti in the Indo‐Pacific region, pointing to undocumented mosquito invasions between countries.</description><identifier>ISSN: 0962-1083</identifier><identifier>ISSN: 1365-294X</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.15430</identifier><identifier>PMID: 32246542</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Aedes - genetics ; Aedes aegypti ; Alleles ; Animals ; Aquatic insects ; Biological invasions ; Dengue fever ; Dispersal ; genetic invasion ; Genomes ; Genotypes ; Geographical distribution ; Insecticide resistance ; Insecticide Resistance - genetics ; Insecticides ; Insecticides - pharmacology ; Ion channels ; linked selection ; Mosquito Vectors - genetics ; Mosquitoes ; Mutation ; Pesticide resistance ; Polymorphism, Single Nucleotide ; Population genetics ; Populations ; Pyrethrins ; Pyrethroids ; Single-nucleotide polymorphism ; Sodium channels ; Sodium Channels - genetics ; Vector-borne diseases ; voltage sensitive sodium channel</subject><ispartof>Molecular ecology, 2020-05, Vol.29 (9), p.1628-1641</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4540-3fb5b97e028e90b76768e118ab621071432a9a144530f0dbd31319cd0fb729db3</citedby><cites>FETCH-LOGICAL-c4540-3fb5b97e028e90b76768e118ab621071432a9a144530f0dbd31319cd0fb729db3</cites><orcidid>0000-0002-9834-4068 ; 0000-0002-0627-0955 ; 0000-0003-4695-075X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.15430$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.15430$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32246542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Endersby‐Harshman, Nancy M.</creatorcontrib><creatorcontrib>Schmidt, Thomas L.</creatorcontrib><creatorcontrib>Chung, Jessica</creatorcontrib><creatorcontrib>Rooyen, Anthony</creatorcontrib><creatorcontrib>Weeks, Andrew R.</creatorcontrib><creatorcontrib>Hoffmann, Ary A.</creatorcontrib><title>Heterogeneous genetic invasions of three insecticide resistance mutations in Indo‐Pacific populations of Aedes aegypti (L.)</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Nations throughout the Indo‐Pacific region use pyrethroid insecticides to control Aedes aegypti, the mosquito vector of dengue, often without knowledge of pyrethroid resistance status of the pest or origin of resistance. Two mutations (V1016G + F1534C) in the sodium channel gene (Vssc) of Ae. aegypti modify ion channel function and cause target‐site resistance to pyrethroid insecticides, with a third mutation (S989P) having a potential additive effect. Of 27 possible genotypes involving these mutations, some allelic combinations are never seen whereas others predominate. Here, five allelic combinations common in Ae. aegypti from the Indo‐Pacific region are described and their geographical distributions investigated using genome‐wide SNP markers. We tested the hypothesis that resistance allele combinations evolved de novo in populations versus the alternative that dispersal of Ae. aegypti between populations facilitated genetic invasions of allele combinations. We used latent factor mixed‐models to detect SNPs throughout the genome that showed structuring in line with resistance allele combinations and compared variation at SNPs within the Vssc gene with genome‐wide variation. Mixed‐models detected an array of SNPs linked to resistance allele combinations, all located within or in close proximity to the Vssc gene. Variation at SNPs within the Vssc gene was structured by resistance profile, whereas genome‐wide SNPs were structured by population. These results demonstrate that alleles near to resistance mutations have been transferred between populations via linked selection. This indicates that genetic invasions have contributed to the widespread occurrence of Vssc allele combinations in Ae. aegypti in the Indo‐Pacific region, pointing to undocumented mosquito invasions between countries.</description><subject>Aedes - genetics</subject><subject>Aedes aegypti</subject><subject>Alleles</subject><subject>Animals</subject><subject>Aquatic insects</subject><subject>Biological invasions</subject><subject>Dengue fever</subject><subject>Dispersal</subject><subject>genetic invasion</subject><subject>Genomes</subject><subject>Genotypes</subject><subject>Geographical distribution</subject><subject>Insecticide resistance</subject><subject>Insecticide Resistance - genetics</subject><subject>Insecticides</subject><subject>Insecticides - pharmacology</subject><subject>Ion channels</subject><subject>linked selection</subject><subject>Mosquito Vectors - genetics</subject><subject>Mosquitoes</subject><subject>Mutation</subject><subject>Pesticide resistance</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Pyrethrins</subject><subject>Pyrethroids</subject><subject>Single-nucleotide polymorphism</subject><subject>Sodium channels</subject><subject>Sodium Channels - genetics</subject><subject>Vector-borne diseases</subject><subject>voltage sensitive sodium channel</subject><issn>0962-1083</issn><issn>1365-294X</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9q3DAQh0VpabZpD3mBIOglOXij_7aOYUmbwJb20EJvQpbHiYJtOZKdsIdAH6HP2CepsrvNIdC5DMx8fMzwQ-iIkiXNddaDW1IpOHmFFpQrWTAtfr5GC6IVKyip-AF6l9ItIZQzKd-iA86YUFKwBXq8hAliuIYBwpzwU5-8w364t8mHIeHQ4ukmAuRRApd3vgEcIfk02cEB7ufJTlvSD_hqaMKfX7-_WefbbBnDOHf7bfacQwMJW7jejJPHJ-vl6Xv0prVdgg_7foh-fLr4vros1l8_X63O14UTUpCCt7WsdQmEVaBJXapSVUBpZWvFKCmp4MxqS4WQnLSkqRtOOdWuIW1dMt3U_BCd7LxjDHczpMn0PjnoOrt92zBeKVYJpWVGP75Ab8Mch3ydYYJorThhZaZOd5SLIaUIrRmj723cGErMUyYmZ2K2mWT2eG-c6x6aZ_JfCBk42wEPvoPN_03my8Vqp_wLFoqWjg</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Endersby‐Harshman, Nancy M.</creator><creator>Schmidt, Thomas L.</creator><creator>Chung, Jessica</creator><creator>Rooyen, Anthony</creator><creator>Weeks, Andrew R.</creator><creator>Hoffmann, Ary A.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9834-4068</orcidid><orcidid>https://orcid.org/0000-0002-0627-0955</orcidid><orcidid>https://orcid.org/0000-0003-4695-075X</orcidid></search><sort><creationdate>202005</creationdate><title>Heterogeneous genetic invasions of three insecticide resistance mutations in Indo‐Pacific populations of Aedes aegypti (L.)</title><author>Endersby‐Harshman, Nancy M. ; Schmidt, Thomas L. ; Chung, Jessica ; Rooyen, Anthony ; Weeks, Andrew R. ; Hoffmann, Ary A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4540-3fb5b97e028e90b76768e118ab621071432a9a144530f0dbd31319cd0fb729db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aedes - genetics</topic><topic>Aedes aegypti</topic><topic>Alleles</topic><topic>Animals</topic><topic>Aquatic insects</topic><topic>Biological invasions</topic><topic>Dengue fever</topic><topic>Dispersal</topic><topic>genetic invasion</topic><topic>Genomes</topic><topic>Genotypes</topic><topic>Geographical distribution</topic><topic>Insecticide resistance</topic><topic>Insecticide Resistance - genetics</topic><topic>Insecticides</topic><topic>Insecticides - pharmacology</topic><topic>Ion channels</topic><topic>linked selection</topic><topic>Mosquito Vectors - genetics</topic><topic>Mosquitoes</topic><topic>Mutation</topic><topic>Pesticide resistance</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Pyrethrins</topic><topic>Pyrethroids</topic><topic>Single-nucleotide polymorphism</topic><topic>Sodium channels</topic><topic>Sodium Channels - genetics</topic><topic>Vector-borne diseases</topic><topic>voltage sensitive sodium channel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Endersby‐Harshman, Nancy M.</creatorcontrib><creatorcontrib>Schmidt, Thomas L.</creatorcontrib><creatorcontrib>Chung, Jessica</creatorcontrib><creatorcontrib>Rooyen, Anthony</creatorcontrib><creatorcontrib>Weeks, Andrew R.</creatorcontrib><creatorcontrib>Hoffmann, Ary A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Endersby‐Harshman, Nancy M.</au><au>Schmidt, Thomas L.</au><au>Chung, Jessica</au><au>Rooyen, Anthony</au><au>Weeks, Andrew R.</au><au>Hoffmann, Ary A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous genetic invasions of three insecticide resistance mutations in Indo‐Pacific populations of Aedes aegypti (L.)</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2020-05</date><risdate>2020</risdate><volume>29</volume><issue>9</issue><spage>1628</spage><epage>1641</epage><pages>1628-1641</pages><issn>0962-1083</issn><issn>1365-294X</issn><eissn>1365-294X</eissn><abstract>Nations throughout the Indo‐Pacific region use pyrethroid insecticides to control Aedes aegypti, the mosquito vector of dengue, often without knowledge of pyrethroid resistance status of the pest or origin of resistance. Two mutations (V1016G + F1534C) in the sodium channel gene (Vssc) of Ae. aegypti modify ion channel function and cause target‐site resistance to pyrethroid insecticides, with a third mutation (S989P) having a potential additive effect. Of 27 possible genotypes involving these mutations, some allelic combinations are never seen whereas others predominate. Here, five allelic combinations common in Ae. aegypti from the Indo‐Pacific region are described and their geographical distributions investigated using genome‐wide SNP markers. We tested the hypothesis that resistance allele combinations evolved de novo in populations versus the alternative that dispersal of Ae. aegypti between populations facilitated genetic invasions of allele combinations. We used latent factor mixed‐models to detect SNPs throughout the genome that showed structuring in line with resistance allele combinations and compared variation at SNPs within the Vssc gene with genome‐wide variation. Mixed‐models detected an array of SNPs linked to resistance allele combinations, all located within or in close proximity to the Vssc gene. Variation at SNPs within the Vssc gene was structured by resistance profile, whereas genome‐wide SNPs were structured by population. These results demonstrate that alleles near to resistance mutations have been transferred between populations via linked selection. This indicates that genetic invasions have contributed to the widespread occurrence of Vssc allele combinations in Ae. aegypti in the Indo‐Pacific region, pointing to undocumented mosquito invasions between countries.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32246542</pmid><doi>10.1111/mec.15430</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9834-4068</orcidid><orcidid>https://orcid.org/0000-0002-0627-0955</orcidid><orcidid>https://orcid.org/0000-0003-4695-075X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2020-05, Vol.29 (9), p.1628-1641
issn 0962-1083
1365-294X
1365-294X
language eng
recordid cdi_proquest_miscellaneous_2386284695
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Aedes - genetics
Aedes aegypti
Alleles
Animals
Aquatic insects
Biological invasions
Dengue fever
Dispersal
genetic invasion
Genomes
Genotypes
Geographical distribution
Insecticide resistance
Insecticide Resistance - genetics
Insecticides
Insecticides - pharmacology
Ion channels
linked selection
Mosquito Vectors - genetics
Mosquitoes
Mutation
Pesticide resistance
Polymorphism, Single Nucleotide
Population genetics
Populations
Pyrethrins
Pyrethroids
Single-nucleotide polymorphism
Sodium channels
Sodium Channels - genetics
Vector-borne diseases
voltage sensitive sodium channel
title Heterogeneous genetic invasions of three insecticide resistance mutations in Indo‐Pacific populations of Aedes aegypti (L.)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A16%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20genetic%20invasions%20of%20three%20insecticide%20resistance%20mutations%20in%20Indo%E2%80%90Pacific%20populations%20of%20Aedes%20aegypti%20(L.)&rft.jtitle=Molecular%20ecology&rft.au=Endersby%E2%80%90Harshman,%20Nancy%20M.&rft.date=2020-05&rft.volume=29&rft.issue=9&rft.spage=1628&rft.epage=1641&rft.pages=1628-1641&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.15430&rft_dat=%3Cproquest_cross%3E2409963027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409963027&rft_id=info:pmid/32246542&rfr_iscdi=true