The Nanomaterial Metabolite Corona Determined Using a Quantitative Metabolomics Approach: A Pilot Study

Nanomaterials (NMs) are promptly coated with biomolecules in biological systems leading to the formation of the so‐called corona. To date, research has predominantly focused on the protein corona and how it affects NM uptake, distribution, and bioactivity by conferring a biological identity to NMs e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-05, Vol.16 (21), p.e2000295-n/a
Hauptverfasser: Chetwynd, Andrew J., Zhang, Wei, Thorn, James A., Lynch, Iseult, Ramautar, Rawi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page e2000295
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 16
creator Chetwynd, Andrew J.
Zhang, Wei
Thorn, James A.
Lynch, Iseult
Ramautar, Rawi
description Nanomaterials (NMs) are promptly coated with biomolecules in biological systems leading to the formation of the so‐called corona. To date, research has predominantly focused on the protein corona and how it affects NM uptake, distribution, and bioactivity by conferring a biological identity to NMs enabling interactions with receptors to mediate cellular responses. Thus, protein corona studies are now integral to nanosafety assessment. However, a larger class of molecules, the metabolites, which are orders of magnitude smaller than proteins (
doi_str_mv 10.1002/smll.202000295
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2386277328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407222350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4135-bfdbbd31cb19e217acc01f191406d99106bd6dc30086a143a0d7dea12a63cc3f3</originalsourceid><addsrcrecordid>eNqFkc1PGzEQxa0KVCjttcfKEpdeEmbszW6WW5S2gBT6IeBszdpeMPKu07W3Vf57jAJB4sJpZjS_eXqax9hnhCkCiJPYeT8VICAP9ewdO8QS5aSci3pv1yMcsA8x3gNIFEX1nh1IIQqYVeKQ3V7fWf6T-tBRsoMjzy9toiZ4lyxfhiH0xL_ZvOpcbw2_ia6_5cT_jNQnlyi5f_b5InROR75Yr4dA-u6UL_hv50PiV2k0m49svyUf7aenesRufny_Xp5PVr_OLpaL1UQXKGeTpjVNYyTqBmsrsCKtAVussYDS1DVC2ZjSaAkwLwkLSWAqYwkFlVJr2coj9nWrm138HW1MqnNRW--pt2GMSsh5KapKinlGj1-h92Ec-uxO5e9UQgg5g0xNt5QeQoyDbdV6cB0NG4WgHiNQjxGoXQT54MuT7Nh01uzw559noN4C_523mzfk1NXlavUi_gDG0JLo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407222350</pqid></control><display><type>article</type><title>The Nanomaterial Metabolite Corona Determined Using a Quantitative Metabolomics Approach: A Pilot Study</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Chetwynd, Andrew J. ; Zhang, Wei ; Thorn, James A. ; Lynch, Iseult ; Ramautar, Rawi</creator><creatorcontrib>Chetwynd, Andrew J. ; Zhang, Wei ; Thorn, James A. ; Lynch, Iseult ; Ramautar, Rawi</creatorcontrib><description>Nanomaterials (NMs) are promptly coated with biomolecules in biological systems leading to the formation of the so‐called corona. To date, research has predominantly focused on the protein corona and how it affects NM uptake, distribution, and bioactivity by conferring a biological identity to NMs enabling interactions with receptors to mediate cellular responses. Thus, protein corona studies are now integral to nanosafety assessment. However, a larger class of molecules, the metabolites, which are orders of magnitude smaller than proteins (&lt;1000 Da) and regulate metabolic pathways, has been largely overlooked. This hampers the understanding of the bio–nano interface, development of computational predictions of corona formation, and investigations into uptake or toxicity at the cellular level, including identification of molecular initiating events triggering adverse outcome pathways. Here, a capillary electrophoresis–mass spectrometry based metabolomics approach reveals that pure polar ionogenic metabolite standards differentially adsorb to a range of 6 NMs (SiO2, 3 TiO2 with different surface chemistries, and naïve and carboxylated polystyrene NMs). The metabolite corona composition is quantitatively compared using protein‐free and complete plasma samples, revealing that proteins in samples significantly change the composition of the metabolite corona. This key finding provides the basis to include the metabolite corona in future nanosafety endeavors. Interactions at the bio–nano interface and formation of biomolecule coronas are a hot research area in nanosafety. Focus to date has been on protein coronas; however, this study demonstrates that metabolites may also play a role in future nanosafety studies, as metabolite–nanoparticle and metabolite–protein–nanoparticle interactions may mediate NP uptake and impact on biological systems.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202000295</identifier><identifier>PMID: 32240572</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; Biomolecules ; capillary electrophoresis ; Composition ; Electrophoresis ; Electrophoresis, Capillary ; Mass Spectrometry ; Metabolites ; Metabolomics ; Nanomaterials ; nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - metabolism ; Nanotechnology ; Pilot Projects ; Polystyrene resins ; Protein Corona - chemistry ; Proteins ; Silicon dioxide ; Silicon Dioxide - chemistry ; small molecule corona ; Titanium - chemistry ; Titanium dioxide ; Toxicity</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-05, Vol.16 (21), p.e2000295-n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 The Authors. Published by WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4135-bfdbbd31cb19e217acc01f191406d99106bd6dc30086a143a0d7dea12a63cc3f3</citedby><cites>FETCH-LOGICAL-c4135-bfdbbd31cb19e217acc01f191406d99106bd6dc30086a143a0d7dea12a63cc3f3</cites><orcidid>0000-0001-6648-6881 ; 0000-0003-4250-4584 ; 0000-0002-1673-4848 ; 0000-0002-8320-3959 ; 0000-0001-7315-0358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202000295$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202000295$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32240572$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chetwynd, Andrew J.</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Thorn, James A.</creatorcontrib><creatorcontrib>Lynch, Iseult</creatorcontrib><creatorcontrib>Ramautar, Rawi</creatorcontrib><title>The Nanomaterial Metabolite Corona Determined Using a Quantitative Metabolomics Approach: A Pilot Study</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Nanomaterials (NMs) are promptly coated with biomolecules in biological systems leading to the formation of the so‐called corona. To date, research has predominantly focused on the protein corona and how it affects NM uptake, distribution, and bioactivity by conferring a biological identity to NMs enabling interactions with receptors to mediate cellular responses. Thus, protein corona studies are now integral to nanosafety assessment. However, a larger class of molecules, the metabolites, which are orders of magnitude smaller than proteins (&lt;1000 Da) and regulate metabolic pathways, has been largely overlooked. This hampers the understanding of the bio–nano interface, development of computational predictions of corona formation, and investigations into uptake or toxicity at the cellular level, including identification of molecular initiating events triggering adverse outcome pathways. Here, a capillary electrophoresis–mass spectrometry based metabolomics approach reveals that pure polar ionogenic metabolite standards differentially adsorb to a range of 6 NMs (SiO2, 3 TiO2 with different surface chemistries, and naïve and carboxylated polystyrene NMs). The metabolite corona composition is quantitatively compared using protein‐free and complete plasma samples, revealing that proteins in samples significantly change the composition of the metabolite corona. This key finding provides the basis to include the metabolite corona in future nanosafety endeavors. Interactions at the bio–nano interface and formation of biomolecule coronas are a hot research area in nanosafety. Focus to date has been on protein coronas; however, this study demonstrates that metabolites may also play a role in future nanosafety studies, as metabolite–nanoparticle and metabolite–protein–nanoparticle interactions may mediate NP uptake and impact on biological systems.</description><subject>Biocompatibility</subject><subject>Biomolecules</subject><subject>capillary electrophoresis</subject><subject>Composition</subject><subject>Electrophoresis</subject><subject>Electrophoresis, Capillary</subject><subject>Mass Spectrometry</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Nanomaterials</subject><subject>nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - metabolism</subject><subject>Nanotechnology</subject><subject>Pilot Projects</subject><subject>Polystyrene resins</subject><subject>Protein Corona - chemistry</subject><subject>Proteins</subject><subject>Silicon dioxide</subject><subject>Silicon Dioxide - chemistry</subject><subject>small molecule corona</subject><subject>Titanium - chemistry</subject><subject>Titanium dioxide</subject><subject>Toxicity</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1PGzEQxa0KVCjttcfKEpdeEmbszW6WW5S2gBT6IeBszdpeMPKu07W3Vf57jAJB4sJpZjS_eXqax9hnhCkCiJPYeT8VICAP9ewdO8QS5aSci3pv1yMcsA8x3gNIFEX1nh1IIQqYVeKQ3V7fWf6T-tBRsoMjzy9toiZ4lyxfhiH0xL_ZvOpcbw2_ia6_5cT_jNQnlyi5f_b5InROR75Yr4dA-u6UL_hv50PiV2k0m49svyUf7aenesRufny_Xp5PVr_OLpaL1UQXKGeTpjVNYyTqBmsrsCKtAVussYDS1DVC2ZjSaAkwLwkLSWAqYwkFlVJr2coj9nWrm138HW1MqnNRW--pt2GMSsh5KapKinlGj1-h92Ec-uxO5e9UQgg5g0xNt5QeQoyDbdV6cB0NG4WgHiNQjxGoXQT54MuT7Nh01uzw559noN4C_523mzfk1NXlavUi_gDG0JLo</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Chetwynd, Andrew J.</creator><creator>Zhang, Wei</creator><creator>Thorn, James A.</creator><creator>Lynch, Iseult</creator><creator>Ramautar, Rawi</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6648-6881</orcidid><orcidid>https://orcid.org/0000-0003-4250-4584</orcidid><orcidid>https://orcid.org/0000-0002-1673-4848</orcidid><orcidid>https://orcid.org/0000-0002-8320-3959</orcidid><orcidid>https://orcid.org/0000-0001-7315-0358</orcidid></search><sort><creationdate>20200501</creationdate><title>The Nanomaterial Metabolite Corona Determined Using a Quantitative Metabolomics Approach: A Pilot Study</title><author>Chetwynd, Andrew J. ; Zhang, Wei ; Thorn, James A. ; Lynch, Iseult ; Ramautar, Rawi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4135-bfdbbd31cb19e217acc01f191406d99106bd6dc30086a143a0d7dea12a63cc3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biocompatibility</topic><topic>Biomolecules</topic><topic>capillary electrophoresis</topic><topic>Composition</topic><topic>Electrophoresis</topic><topic>Electrophoresis, Capillary</topic><topic>Mass Spectrometry</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Nanomaterials</topic><topic>nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - metabolism</topic><topic>Nanotechnology</topic><topic>Pilot Projects</topic><topic>Polystyrene resins</topic><topic>Protein Corona - chemistry</topic><topic>Proteins</topic><topic>Silicon dioxide</topic><topic>Silicon Dioxide - chemistry</topic><topic>small molecule corona</topic><topic>Titanium - chemistry</topic><topic>Titanium dioxide</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chetwynd, Andrew J.</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Thorn, James A.</creatorcontrib><creatorcontrib>Lynch, Iseult</creatorcontrib><creatorcontrib>Ramautar, Rawi</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chetwynd, Andrew J.</au><au>Zhang, Wei</au><au>Thorn, James A.</au><au>Lynch, Iseult</au><au>Ramautar, Rawi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Nanomaterial Metabolite Corona Determined Using a Quantitative Metabolomics Approach: A Pilot Study</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>16</volume><issue>21</issue><spage>e2000295</spage><epage>n/a</epage><pages>e2000295-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Nanomaterials (NMs) are promptly coated with biomolecules in biological systems leading to the formation of the so‐called corona. To date, research has predominantly focused on the protein corona and how it affects NM uptake, distribution, and bioactivity by conferring a biological identity to NMs enabling interactions with receptors to mediate cellular responses. Thus, protein corona studies are now integral to nanosafety assessment. However, a larger class of molecules, the metabolites, which are orders of magnitude smaller than proteins (&lt;1000 Da) and regulate metabolic pathways, has been largely overlooked. This hampers the understanding of the bio–nano interface, development of computational predictions of corona formation, and investigations into uptake or toxicity at the cellular level, including identification of molecular initiating events triggering adverse outcome pathways. Here, a capillary electrophoresis–mass spectrometry based metabolomics approach reveals that pure polar ionogenic metabolite standards differentially adsorb to a range of 6 NMs (SiO2, 3 TiO2 with different surface chemistries, and naïve and carboxylated polystyrene NMs). The metabolite corona composition is quantitatively compared using protein‐free and complete plasma samples, revealing that proteins in samples significantly change the composition of the metabolite corona. This key finding provides the basis to include the metabolite corona in future nanosafety endeavors. Interactions at the bio–nano interface and formation of biomolecule coronas are a hot research area in nanosafety. Focus to date has been on protein coronas; however, this study demonstrates that metabolites may also play a role in future nanosafety studies, as metabolite–nanoparticle and metabolite–protein–nanoparticle interactions may mediate NP uptake and impact on biological systems.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32240572</pmid><doi>10.1002/smll.202000295</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6648-6881</orcidid><orcidid>https://orcid.org/0000-0003-4250-4584</orcidid><orcidid>https://orcid.org/0000-0002-1673-4848</orcidid><orcidid>https://orcid.org/0000-0002-8320-3959</orcidid><orcidid>https://orcid.org/0000-0001-7315-0358</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2020-05, Vol.16 (21), p.e2000295-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2386277328
source Wiley-Blackwell Journals; MEDLINE
subjects Biocompatibility
Biomolecules
capillary electrophoresis
Composition
Electrophoresis
Electrophoresis, Capillary
Mass Spectrometry
Metabolites
Metabolomics
Nanomaterials
nanoparticles
Nanoparticles - chemistry
Nanoparticles - metabolism
Nanotechnology
Pilot Projects
Polystyrene resins
Protein Corona - chemistry
Proteins
Silicon dioxide
Silicon Dioxide - chemistry
small molecule corona
Titanium - chemistry
Titanium dioxide
Toxicity
title The Nanomaterial Metabolite Corona Determined Using a Quantitative Metabolomics Approach: A Pilot Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Nanomaterial%20Metabolite%20Corona%20Determined%20Using%20a%20Quantitative%20Metabolomics%20Approach:%20A%20Pilot%20Study&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Chetwynd,%20Andrew%20J.&rft.date=2020-05-01&rft.volume=16&rft.issue=21&rft.spage=e2000295&rft.epage=n/a&rft.pages=e2000295-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202000295&rft_dat=%3Cproquest_cross%3E2407222350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407222350&rft_id=info:pmid/32240572&rfr_iscdi=true