A Universal Strategy for Carbon-Supported Transition Metal Phosphides as High-Performance Bifunctional Electrocatalysts towards Efficient Overall Water Splitting

Exploring cost-effective and general approaches for highly active and stable bifunctional transition metal phosphide (TMP) electrocatalysts towards overall water splitting is greatly desirable and challenging. Herein, a general strategy combining sol–gel and a carbonization-assisted route was propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-04, Vol.12 (17), p.19447-19456
Hauptverfasser: Kang, Qiaoling, Li, Mengyuan, Shi, Jiangwei, Lu, Qingyi, Gao, Feng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19456
container_issue 17
container_start_page 19447
container_title ACS applied materials & interfaces
container_volume 12
creator Kang, Qiaoling
Li, Mengyuan
Shi, Jiangwei
Lu, Qingyi
Gao, Feng
description Exploring cost-effective and general approaches for highly active and stable bifunctional transition metal phosphide (TMP) electrocatalysts towards overall water splitting is greatly desirable and challenging. Herein, a general strategy combining sol–gel and a carbonization-assisted route was proposed to facilely fabricate a series of TMP nanoparticles, including CoP, MoP, FeP, Cu2P, Ni2P, PtP2, FeNiP, CoNiP, and FeCoNiP, coupled in an amorphous carbon matrix with one-step carbon composite formation. The resultant NiFeP@C exhibits excellent activities as a bifunctional electrocatalyst toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) with low overpotentials of 260 and 160 mV, respectively, at 10 mA/cm2 in 1 M KOH solution. With the NiFeP@C electrocatalyst as both electrode materials, an integrated electrolyzer can deliver 47.0 mA/cm2 of current density at 1.60 V, better than the assembled Pt/C20∥IrO2 counterpart. The encapsulation of NiFeP nanoparticles in the carbon matrix effectively prevents their corrosion and leads to almost unfading catalytic activities for more than 20 h for either the HER, OER, or overall water splitting, outperforming recently reported bifunctional electrocatalysts. The coexistence of Ni, Fe, P, and C would have synergetic effects to accelerate charge transfer and promote electrocatalytic activity. This universal strategy for TMP-based composites opens up a new avenue to explore TMPs as multifunctional materials for various applications.
doi_str_mv 10.1021/acsami.0c00795
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2386276927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386276927</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-c80b081d787df8b7bd3a04106b4ddc7dfc06f49e5f850771c153e9bf3d4d232c3</originalsourceid><addsrcrecordid>eNp1kUlrHDEQhUVwiJfkmmPQ0QR6oq23oz1MbIODDWOTY6PWMiPTLbVVaof5OfmnlpmJbzlVUXzv8aiH0FdKFpQw-kMqkKNbEEVI3ZYf0AlthSgaVrKj912IY3QK8ERIxRkpP6FjzphgVclO0N8L_Ojdi4kgB7xOUSaz2WEbIl7K2AdfrOdpCjEZjR-i9OCSCx7_Minj99sA09ZpA1gCvnabbXFvYtaO0iuDL52dvXrjM7sajEoxKJmFO0iAU_gjowa8stYpZ3zCdzmFHAb8O2eIeD0NLiXnN5_RRysHMF8O8ww9_lw9LK-L27urm-XFbSF5W6VCNaQnDdV1U2vb9HWvuSSCkqoXWqt8U6SyojWlbUpS11TRkpu2t1wLzThT_Ayd732nGJ5nA6kbHSgzDNKbMEPHeFOxumpZndHFHlUxAERjuym6UcZdR0n3Vku3r6U71JIF3w7ecz8a_Y7_6yED3_dAFnZPYY75Z_A_t1cvT5wO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386276927</pqid></control><display><type>article</type><title>A Universal Strategy for Carbon-Supported Transition Metal Phosphides as High-Performance Bifunctional Electrocatalysts towards Efficient Overall Water Splitting</title><source>American Chemical Society Journals</source><creator>Kang, Qiaoling ; Li, Mengyuan ; Shi, Jiangwei ; Lu, Qingyi ; Gao, Feng</creator><creatorcontrib>Kang, Qiaoling ; Li, Mengyuan ; Shi, Jiangwei ; Lu, Qingyi ; Gao, Feng</creatorcontrib><description>Exploring cost-effective and general approaches for highly active and stable bifunctional transition metal phosphide (TMP) electrocatalysts towards overall water splitting is greatly desirable and challenging. Herein, a general strategy combining sol–gel and a carbonization-assisted route was proposed to facilely fabricate a series of TMP nanoparticles, including CoP, MoP, FeP, Cu2P, Ni2P, PtP2, FeNiP, CoNiP, and FeCoNiP, coupled in an amorphous carbon matrix with one-step carbon composite formation. The resultant NiFeP@C exhibits excellent activities as a bifunctional electrocatalyst toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) with low overpotentials of 260 and 160 mV, respectively, at 10 mA/cm2 in 1 M KOH solution. With the NiFeP@C electrocatalyst as both electrode materials, an integrated electrolyzer can deliver 47.0 mA/cm2 of current density at 1.60 V, better than the assembled Pt/C20∥IrO2 counterpart. The encapsulation of NiFeP nanoparticles in the carbon matrix effectively prevents their corrosion and leads to almost unfading catalytic activities for more than 20 h for either the HER, OER, or overall water splitting, outperforming recently reported bifunctional electrocatalysts. The coexistence of Ni, Fe, P, and C would have synergetic effects to accelerate charge transfer and promote electrocatalytic activity. This universal strategy for TMP-based composites opens up a new avenue to explore TMPs as multifunctional materials for various applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c00795</identifier><identifier>PMID: 32242652</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2020-04, Vol.12 (17), p.19447-19456</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-c80b081d787df8b7bd3a04106b4ddc7dfc06f49e5f850771c153e9bf3d4d232c3</citedby><cites>FETCH-LOGICAL-a396t-c80b081d787df8b7bd3a04106b4ddc7dfc06f49e5f850771c153e9bf3d4d232c3</cites><orcidid>0000-0002-9915-4223 ; 0000-0002-6160-9499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c00795$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c00795$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32242652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Qiaoling</creatorcontrib><creatorcontrib>Li, Mengyuan</creatorcontrib><creatorcontrib>Shi, Jiangwei</creatorcontrib><creatorcontrib>Lu, Qingyi</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><title>A Universal Strategy for Carbon-Supported Transition Metal Phosphides as High-Performance Bifunctional Electrocatalysts towards Efficient Overall Water Splitting</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Exploring cost-effective and general approaches for highly active and stable bifunctional transition metal phosphide (TMP) electrocatalysts towards overall water splitting is greatly desirable and challenging. Herein, a general strategy combining sol–gel and a carbonization-assisted route was proposed to facilely fabricate a series of TMP nanoparticles, including CoP, MoP, FeP, Cu2P, Ni2P, PtP2, FeNiP, CoNiP, and FeCoNiP, coupled in an amorphous carbon matrix with one-step carbon composite formation. The resultant NiFeP@C exhibits excellent activities as a bifunctional electrocatalyst toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) with low overpotentials of 260 and 160 mV, respectively, at 10 mA/cm2 in 1 M KOH solution. With the NiFeP@C electrocatalyst as both electrode materials, an integrated electrolyzer can deliver 47.0 mA/cm2 of current density at 1.60 V, better than the assembled Pt/C20∥IrO2 counterpart. The encapsulation of NiFeP nanoparticles in the carbon matrix effectively prevents their corrosion and leads to almost unfading catalytic activities for more than 20 h for either the HER, OER, or overall water splitting, outperforming recently reported bifunctional electrocatalysts. The coexistence of Ni, Fe, P, and C would have synergetic effects to accelerate charge transfer and promote electrocatalytic activity. This universal strategy for TMP-based composites opens up a new avenue to explore TMPs as multifunctional materials for various applications.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kUlrHDEQhUVwiJfkmmPQ0QR6oq23oz1MbIODDWOTY6PWMiPTLbVVaof5OfmnlpmJbzlVUXzv8aiH0FdKFpQw-kMqkKNbEEVI3ZYf0AlthSgaVrKj912IY3QK8ERIxRkpP6FjzphgVclO0N8L_Ojdi4kgB7xOUSaz2WEbIl7K2AdfrOdpCjEZjR-i9OCSCx7_Minj99sA09ZpA1gCvnabbXFvYtaO0iuDL52dvXrjM7sajEoxKJmFO0iAU_gjowa8stYpZ3zCdzmFHAb8O2eIeD0NLiXnN5_RRysHMF8O8ww9_lw9LK-L27urm-XFbSF5W6VCNaQnDdV1U2vb9HWvuSSCkqoXWqt8U6SyojWlbUpS11TRkpu2t1wLzThT_Ayd732nGJ5nA6kbHSgzDNKbMEPHeFOxumpZndHFHlUxAERjuym6UcZdR0n3Vku3r6U71JIF3w7ecz8a_Y7_6yED3_dAFnZPYY75Z_A_t1cvT5wO</recordid><startdate>20200429</startdate><enddate>20200429</enddate><creator>Kang, Qiaoling</creator><creator>Li, Mengyuan</creator><creator>Shi, Jiangwei</creator><creator>Lu, Qingyi</creator><creator>Gao, Feng</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9915-4223</orcidid><orcidid>https://orcid.org/0000-0002-6160-9499</orcidid></search><sort><creationdate>20200429</creationdate><title>A Universal Strategy for Carbon-Supported Transition Metal Phosphides as High-Performance Bifunctional Electrocatalysts towards Efficient Overall Water Splitting</title><author>Kang, Qiaoling ; Li, Mengyuan ; Shi, Jiangwei ; Lu, Qingyi ; Gao, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-c80b081d787df8b7bd3a04106b4ddc7dfc06f49e5f850771c153e9bf3d4d232c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Qiaoling</creatorcontrib><creatorcontrib>Li, Mengyuan</creatorcontrib><creatorcontrib>Shi, Jiangwei</creatorcontrib><creatorcontrib>Lu, Qingyi</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Qiaoling</au><au>Li, Mengyuan</au><au>Shi, Jiangwei</au><au>Lu, Qingyi</au><au>Gao, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Universal Strategy for Carbon-Supported Transition Metal Phosphides as High-Performance Bifunctional Electrocatalysts towards Efficient Overall Water Splitting</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-04-29</date><risdate>2020</risdate><volume>12</volume><issue>17</issue><spage>19447</spage><epage>19456</epage><pages>19447-19456</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Exploring cost-effective and general approaches for highly active and stable bifunctional transition metal phosphide (TMP) electrocatalysts towards overall water splitting is greatly desirable and challenging. Herein, a general strategy combining sol–gel and a carbonization-assisted route was proposed to facilely fabricate a series of TMP nanoparticles, including CoP, MoP, FeP, Cu2P, Ni2P, PtP2, FeNiP, CoNiP, and FeCoNiP, coupled in an amorphous carbon matrix with one-step carbon composite formation. The resultant NiFeP@C exhibits excellent activities as a bifunctional electrocatalyst toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) with low overpotentials of 260 and 160 mV, respectively, at 10 mA/cm2 in 1 M KOH solution. With the NiFeP@C electrocatalyst as both electrode materials, an integrated electrolyzer can deliver 47.0 mA/cm2 of current density at 1.60 V, better than the assembled Pt/C20∥IrO2 counterpart. The encapsulation of NiFeP nanoparticles in the carbon matrix effectively prevents their corrosion and leads to almost unfading catalytic activities for more than 20 h for either the HER, OER, or overall water splitting, outperforming recently reported bifunctional electrocatalysts. The coexistence of Ni, Fe, P, and C would have synergetic effects to accelerate charge transfer and promote electrocatalytic activity. This universal strategy for TMP-based composites opens up a new avenue to explore TMPs as multifunctional materials for various applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32242652</pmid><doi>10.1021/acsami.0c00795</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9915-4223</orcidid><orcidid>https://orcid.org/0000-0002-6160-9499</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-04, Vol.12 (17), p.19447-19456
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2386276927
source American Chemical Society Journals
title A Universal Strategy for Carbon-Supported Transition Metal Phosphides as High-Performance Bifunctional Electrocatalysts towards Efficient Overall Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A02%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Universal%20Strategy%20for%20Carbon-Supported%20Transition%20Metal%20Phosphides%20as%20High-Performance%20Bifunctional%20Electrocatalysts%20towards%20Efficient%20Overall%20Water%20Splitting&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kang,%20Qiaoling&rft.date=2020-04-29&rft.volume=12&rft.issue=17&rft.spage=19447&rft.epage=19456&rft.pages=19447-19456&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c00795&rft_dat=%3Cproquest_cross%3E2386276927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386276927&rft_id=info:pmid/32242652&rfr_iscdi=true