Deep Hypothermic Circulatory Arrest Activates Neural Precursor Cells in the Neonatal Brain

Use of antegrade cerebral perfusion (ACP) as an alternative neuroprotection strategy to deep hypothermic circulatory arrest (DHCA) in the setting of cardiopulmonary bypass in neonates has become a common approach, although the value of ACP over DHCA remains highly debated. This study investigated th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of thoracic surgery 2020-12, Vol.110 (6), p.2076-2081
Hauptverfasser: Centola, Luca, Kanamitsu, Hitoshi, Kinouchi, Katsushi, Fuji, Yasuhiro, Ito, Hiroki, Maeda, Katsuhide, Beckman, Roland, Ma, Xiaoyuan, Hanley, Frank L., Riemer, Robert Kirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2081
container_issue 6
container_start_page 2076
container_title The Annals of thoracic surgery
container_volume 110
creator Centola, Luca
Kanamitsu, Hitoshi
Kinouchi, Katsushi
Fuji, Yasuhiro
Ito, Hiroki
Maeda, Katsuhide
Beckman, Roland
Ma, Xiaoyuan
Hanley, Frank L.
Riemer, Robert Kirk
description Use of antegrade cerebral perfusion (ACP) as an alternative neuroprotection strategy to deep hypothermic circulatory arrest (DHCA) in the setting of cardiopulmonary bypass in neonates has become a common approach, although the value of ACP over DHCA remains highly debated. This study investigated the disruption to neonatal brain homeostasis by DHCA and ACP. Neonatal pigs (7 days old) undergoing bypass were assigned to 4 groups: DHCA at 18°C and ACP at 18°, 25°, and 32° for 45 minutes (n = 6 per group). ACP was initiated through the innominate artery and maintained at 40 mL/kg/min. After bypass, all animals were maintained sedated and intubated for 24 hours before being euthanized. Brain subventricular zone tissues were analyzed for histologic injury by assessing apoptosis and neural homeostasis (Nestin). Histologic examination showed no significant ischemic/hypoxic neuronal death at any cooling temperature among the 4 treatment groups. However, we detected a significantly higher apoptotic rate in DHCA compared with ACP at 18°C (P = .003-.017) or 25°C (P = .012-.043), whereas apoptosis at 32°C was not different from DHCA. Of note, we identified increased Nestin expression in the DHCA group compared with all ACP groups (P range = .011-.041). Neonatal piglet ACP at 18° or 25°C provides adequate protection from increased brain cellular apoptosis. In contrast to ACP, however, DHCA induces brain Nestin expression, indicating activation of neural progenitor cells and the potential of altering neonatal neurodevelopmental progression. DHCA has potential to more profoundly disrupt neural homeostasis than does ACP.
doi_str_mv 10.1016/j.athoracsur.2020.02.058
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2386275177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003497520304331</els_id><sourcerecordid>2386275177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-9eb5250e943cb85edc3025bf81225420008a0ecb0ef6b80b38720441a5d950693</originalsourceid><addsrcrecordid>eNqFkM1P3DAQxS1UBMvHv4B87CVhMonzcVy2tCChlgNcuFiOMyu8ysbbsYO0_32NlrZHTiPrvTfz_BNCFpAXUNTXm9zEV8_GhplzBIQcMAfVHolFoRRmNarui1gAQJlVXaNOxVkIm_TEJJ-I0xKxgrpSC_HyjWgn7_Y7H1-Jt87KlWM7jyZ63sslM4Uolza6NxMpyJ80sxnlI5OdOXiWKxrHIN0kUzypfjIx6Tds3HQhjtdmDHT5Mc_F8_fbp9Vd9vDrx_1q-ZDZsqli1lGvUAF1VWn7VtFgS0DVr9sCUVWYSrcGyPZA67pvoS_bBqGqCqOGTkHdlefi62Hvjv3vOfXVWxds6mUm8nPQWLY1NqpommRtD1bLPgSmtd6x2xre6wL0O1m90f_J6neyGlAnsil69XFl7rc0_Av-RZkMNwcDpb--OWIdrKPJ0uASragH7z6_8gdCEI8D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386275177</pqid></control><display><type>article</type><title>Deep Hypothermic Circulatory Arrest Activates Neural Precursor Cells in the Neonatal Brain</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Centola, Luca ; Kanamitsu, Hitoshi ; Kinouchi, Katsushi ; Fuji, Yasuhiro ; Ito, Hiroki ; Maeda, Katsuhide ; Beckman, Roland ; Ma, Xiaoyuan ; Hanley, Frank L. ; Riemer, Robert Kirk</creator><creatorcontrib>Centola, Luca ; Kanamitsu, Hitoshi ; Kinouchi, Katsushi ; Fuji, Yasuhiro ; Ito, Hiroki ; Maeda, Katsuhide ; Beckman, Roland ; Ma, Xiaoyuan ; Hanley, Frank L. ; Riemer, Robert Kirk</creatorcontrib><description>Use of antegrade cerebral perfusion (ACP) as an alternative neuroprotection strategy to deep hypothermic circulatory arrest (DHCA) in the setting of cardiopulmonary bypass in neonates has become a common approach, although the value of ACP over DHCA remains highly debated. This study investigated the disruption to neonatal brain homeostasis by DHCA and ACP. Neonatal pigs (7 days old) undergoing bypass were assigned to 4 groups: DHCA at 18°C and ACP at 18°, 25°, and 32° for 45 minutes (n = 6 per group). ACP was initiated through the innominate artery and maintained at 40 mL/kg/min. After bypass, all animals were maintained sedated and intubated for 24 hours before being euthanized. Brain subventricular zone tissues were analyzed for histologic injury by assessing apoptosis and neural homeostasis (Nestin). Histologic examination showed no significant ischemic/hypoxic neuronal death at any cooling temperature among the 4 treatment groups. However, we detected a significantly higher apoptotic rate in DHCA compared with ACP at 18°C (P = .003-.017) or 25°C (P = .012-.043), whereas apoptosis at 32°C was not different from DHCA. Of note, we identified increased Nestin expression in the DHCA group compared with all ACP groups (P range = .011-.041). Neonatal piglet ACP at 18° or 25°C provides adequate protection from increased brain cellular apoptosis. In contrast to ACP, however, DHCA induces brain Nestin expression, indicating activation of neural progenitor cells and the potential of altering neonatal neurodevelopmental progression. DHCA has potential to more profoundly disrupt neural homeostasis than does ACP.</description><identifier>ISSN: 0003-4975</identifier><identifier>EISSN: 1552-6259</identifier><identifier>DOI: 10.1016/j.athoracsur.2020.02.058</identifier><identifier>PMID: 32240645</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Animals ; Animals, Newborn ; Apoptosis ; Brain - metabolism ; Brain - pathology ; Cardiopulmonary Bypass - methods ; Circulatory Arrest, Deep Hypothermia Induced - methods ; Models, Animal ; Nestin - metabolism ; Neural Stem Cells - metabolism ; Neural Stem Cells - pathology ; Perfusion - methods ; Swine</subject><ispartof>The Annals of thoracic surgery, 2020-12, Vol.110 (6), p.2076-2081</ispartof><rights>2020 The Society of Thoracic Surgeons</rights><rights>Copyright © 2020 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-9eb5250e943cb85edc3025bf81225420008a0ecb0ef6b80b38720441a5d950693</citedby><cites>FETCH-LOGICAL-c374t-9eb5250e943cb85edc3025bf81225420008a0ecb0ef6b80b38720441a5d950693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32240645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Centola, Luca</creatorcontrib><creatorcontrib>Kanamitsu, Hitoshi</creatorcontrib><creatorcontrib>Kinouchi, Katsushi</creatorcontrib><creatorcontrib>Fuji, Yasuhiro</creatorcontrib><creatorcontrib>Ito, Hiroki</creatorcontrib><creatorcontrib>Maeda, Katsuhide</creatorcontrib><creatorcontrib>Beckman, Roland</creatorcontrib><creatorcontrib>Ma, Xiaoyuan</creatorcontrib><creatorcontrib>Hanley, Frank L.</creatorcontrib><creatorcontrib>Riemer, Robert Kirk</creatorcontrib><title>Deep Hypothermic Circulatory Arrest Activates Neural Precursor Cells in the Neonatal Brain</title><title>The Annals of thoracic surgery</title><addtitle>Ann Thorac Surg</addtitle><description>Use of antegrade cerebral perfusion (ACP) as an alternative neuroprotection strategy to deep hypothermic circulatory arrest (DHCA) in the setting of cardiopulmonary bypass in neonates has become a common approach, although the value of ACP over DHCA remains highly debated. This study investigated the disruption to neonatal brain homeostasis by DHCA and ACP. Neonatal pigs (7 days old) undergoing bypass were assigned to 4 groups: DHCA at 18°C and ACP at 18°, 25°, and 32° for 45 minutes (n = 6 per group). ACP was initiated through the innominate artery and maintained at 40 mL/kg/min. After bypass, all animals were maintained sedated and intubated for 24 hours before being euthanized. Brain subventricular zone tissues were analyzed for histologic injury by assessing apoptosis and neural homeostasis (Nestin). Histologic examination showed no significant ischemic/hypoxic neuronal death at any cooling temperature among the 4 treatment groups. However, we detected a significantly higher apoptotic rate in DHCA compared with ACP at 18°C (P = .003-.017) or 25°C (P = .012-.043), whereas apoptosis at 32°C was not different from DHCA. Of note, we identified increased Nestin expression in the DHCA group compared with all ACP groups (P range = .011-.041). Neonatal piglet ACP at 18° or 25°C provides adequate protection from increased brain cellular apoptosis. In contrast to ACP, however, DHCA induces brain Nestin expression, indicating activation of neural progenitor cells and the potential of altering neonatal neurodevelopmental progression. DHCA has potential to more profoundly disrupt neural homeostasis than does ACP.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Apoptosis</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Cardiopulmonary Bypass - methods</subject><subject>Circulatory Arrest, Deep Hypothermia Induced - methods</subject><subject>Models, Animal</subject><subject>Nestin - metabolism</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neural Stem Cells - pathology</subject><subject>Perfusion - methods</subject><subject>Swine</subject><issn>0003-4975</issn><issn>1552-6259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1P3DAQxS1UBMvHv4B87CVhMonzcVy2tCChlgNcuFiOMyu8ysbbsYO0_32NlrZHTiPrvTfz_BNCFpAXUNTXm9zEV8_GhplzBIQcMAfVHolFoRRmNarui1gAQJlVXaNOxVkIm_TEJJ-I0xKxgrpSC_HyjWgn7_Y7H1-Jt87KlWM7jyZ63sslM4Uolza6NxMpyJ80sxnlI5OdOXiWKxrHIN0kUzypfjIx6Tds3HQhjtdmDHT5Mc_F8_fbp9Vd9vDrx_1q-ZDZsqli1lGvUAF1VWn7VtFgS0DVr9sCUVWYSrcGyPZA67pvoS_bBqGqCqOGTkHdlefi62Hvjv3vOfXVWxds6mUm8nPQWLY1NqpommRtD1bLPgSmtd6x2xre6wL0O1m90f_J6neyGlAnsil69XFl7rc0_Av-RZkMNwcDpb--OWIdrKPJ0uASragH7z6_8gdCEI8D</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Centola, Luca</creator><creator>Kanamitsu, Hitoshi</creator><creator>Kinouchi, Katsushi</creator><creator>Fuji, Yasuhiro</creator><creator>Ito, Hiroki</creator><creator>Maeda, Katsuhide</creator><creator>Beckman, Roland</creator><creator>Ma, Xiaoyuan</creator><creator>Hanley, Frank L.</creator><creator>Riemer, Robert Kirk</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202012</creationdate><title>Deep Hypothermic Circulatory Arrest Activates Neural Precursor Cells in the Neonatal Brain</title><author>Centola, Luca ; Kanamitsu, Hitoshi ; Kinouchi, Katsushi ; Fuji, Yasuhiro ; Ito, Hiroki ; Maeda, Katsuhide ; Beckman, Roland ; Ma, Xiaoyuan ; Hanley, Frank L. ; Riemer, Robert Kirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-9eb5250e943cb85edc3025bf81225420008a0ecb0ef6b80b38720441a5d950693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Apoptosis</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Cardiopulmonary Bypass - methods</topic><topic>Circulatory Arrest, Deep Hypothermia Induced - methods</topic><topic>Models, Animal</topic><topic>Nestin - metabolism</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neural Stem Cells - pathology</topic><topic>Perfusion - methods</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Centola, Luca</creatorcontrib><creatorcontrib>Kanamitsu, Hitoshi</creatorcontrib><creatorcontrib>Kinouchi, Katsushi</creatorcontrib><creatorcontrib>Fuji, Yasuhiro</creatorcontrib><creatorcontrib>Ito, Hiroki</creatorcontrib><creatorcontrib>Maeda, Katsuhide</creatorcontrib><creatorcontrib>Beckman, Roland</creatorcontrib><creatorcontrib>Ma, Xiaoyuan</creatorcontrib><creatorcontrib>Hanley, Frank L.</creatorcontrib><creatorcontrib>Riemer, Robert Kirk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Annals of thoracic surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Centola, Luca</au><au>Kanamitsu, Hitoshi</au><au>Kinouchi, Katsushi</au><au>Fuji, Yasuhiro</au><au>Ito, Hiroki</au><au>Maeda, Katsuhide</au><au>Beckman, Roland</au><au>Ma, Xiaoyuan</au><au>Hanley, Frank L.</au><au>Riemer, Robert Kirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Hypothermic Circulatory Arrest Activates Neural Precursor Cells in the Neonatal Brain</atitle><jtitle>The Annals of thoracic surgery</jtitle><addtitle>Ann Thorac Surg</addtitle><date>2020-12</date><risdate>2020</risdate><volume>110</volume><issue>6</issue><spage>2076</spage><epage>2081</epage><pages>2076-2081</pages><issn>0003-4975</issn><eissn>1552-6259</eissn><abstract>Use of antegrade cerebral perfusion (ACP) as an alternative neuroprotection strategy to deep hypothermic circulatory arrest (DHCA) in the setting of cardiopulmonary bypass in neonates has become a common approach, although the value of ACP over DHCA remains highly debated. This study investigated the disruption to neonatal brain homeostasis by DHCA and ACP. Neonatal pigs (7 days old) undergoing bypass were assigned to 4 groups: DHCA at 18°C and ACP at 18°, 25°, and 32° for 45 minutes (n = 6 per group). ACP was initiated through the innominate artery and maintained at 40 mL/kg/min. After bypass, all animals were maintained sedated and intubated for 24 hours before being euthanized. Brain subventricular zone tissues were analyzed for histologic injury by assessing apoptosis and neural homeostasis (Nestin). Histologic examination showed no significant ischemic/hypoxic neuronal death at any cooling temperature among the 4 treatment groups. However, we detected a significantly higher apoptotic rate in DHCA compared with ACP at 18°C (P = .003-.017) or 25°C (P = .012-.043), whereas apoptosis at 32°C was not different from DHCA. Of note, we identified increased Nestin expression in the DHCA group compared with all ACP groups (P range = .011-.041). Neonatal piglet ACP at 18° or 25°C provides adequate protection from increased brain cellular apoptosis. In contrast to ACP, however, DHCA induces brain Nestin expression, indicating activation of neural progenitor cells and the potential of altering neonatal neurodevelopmental progression. DHCA has potential to more profoundly disrupt neural homeostasis than does ACP.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>32240645</pmid><doi>10.1016/j.athoracsur.2020.02.058</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-4975
ispartof The Annals of thoracic surgery, 2020-12, Vol.110 (6), p.2076-2081
issn 0003-4975
1552-6259
language eng
recordid cdi_proquest_miscellaneous_2386275177
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Animals, Newborn
Apoptosis
Brain - metabolism
Brain - pathology
Cardiopulmonary Bypass - methods
Circulatory Arrest, Deep Hypothermia Induced - methods
Models, Animal
Nestin - metabolism
Neural Stem Cells - metabolism
Neural Stem Cells - pathology
Perfusion - methods
Swine
title Deep Hypothermic Circulatory Arrest Activates Neural Precursor Cells in the Neonatal Brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Hypothermic%20Circulatory%20Arrest%20Activates%20Neural%20Precursor%20Cells%20in%20the%20Neonatal%20Brain&rft.jtitle=The%20Annals%20of%20thoracic%20surgery&rft.au=Centola,%20Luca&rft.date=2020-12&rft.volume=110&rft.issue=6&rft.spage=2076&rft.epage=2081&rft.pages=2076-2081&rft.issn=0003-4975&rft.eissn=1552-6259&rft_id=info:doi/10.1016/j.athoracsur.2020.02.058&rft_dat=%3Cproquest_cross%3E2386275177%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386275177&rft_id=info:pmid/32240645&rft_els_id=S0003497520304331&rfr_iscdi=true