Estimation of genomic breed composition of individual animals in composite beef cattle
Summary Three statistical models (an admixture model, linear regression, and ridge‐regression BLUP) and two strategies for selecting SNP panels (uniformly spaced vs. maximum Euclidean distance of SNP allele frequencies between ancestral breeds) were compared for estimating genomic‐estimated breed co...
Gespeichert in:
Veröffentlicht in: | Animal genetics 2020-06, Vol.51 (3), p.457-460 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 460 |
---|---|
container_issue | 3 |
container_start_page | 457 |
container_title | Animal genetics |
container_volume | 51 |
creator | Li, Z. Wu, X.‐L. Guo, W. He, J. Li, H. Rosa, G. J. M. Gianola, D. Tait, R. G. Parham, J. Genho, J. Schultz, T. Bauck, S. |
description | Summary
Three statistical models (an admixture model, linear regression, and ridge‐regression BLUP) and two strategies for selecting SNP panels (uniformly spaced vs. maximum Euclidean distance of SNP allele frequencies between ancestral breeds) were compared for estimating genomic‐estimated breed composition (GBC) in Brangus and Santa Gertrudis cattle, respectively. Animals were genotyped with a GeneSeek Genomic Profiler bovine low‐density version 4 SNP chip. The estimated GBC was consistent among the uniformly spaced SNP panels, and values were similar between the three models. However, estimated GBC varied considerably between the three methods when using fewer than 10 000 SNPs that maximized the Euclidean distance of allele frequencies between the ancestral breeds. The admixture model performed most consistently across various SNP panel sizes. For the other two models, stabilized estimates were obtained with an SNP panel size of 20 000 SNPs or more. Based on the uniformly spaced 20K SNP panel, the estimated GBC was 69.8–70.5% Angus and 29.5–30.2% Brahman for Brangus, and 63.9–65.3% Shorthorn and 34.7–36.1% Brahman in Santa Gertrudis. The estimated GBC of ancestries for Santa Gertrudis roughly agreed with the pedigree‐expected values. However, the estimated GBC in Brangus showed a considerably larger Angus composition than the pedigree‐expected value (62.5%). The elevated Angus composition in the Brangus could be due to the mixture of some 1/2 Ultrablack animals (Brangus × Angus). Another reason could be the consequences of selection in Brangus cattle for phenotypes where the Angus breed has advantages. |
doi_str_mv | 10.1111/age.12928 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2385709589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399621363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3538-2f0899703ba742f619802962e9a28fbb63833173a3193914fa38d19b8ac333693</originalsourceid><addsrcrecordid>eNp1kEFLwzAUx4Mobk4PfgEpeNFDtyRvbZLjGHMKAy_qNaRtMjLaZjatsm9vZrcdBHMJ5P3yf-_9ELoleEzCmai1HhMqKD9DQwJpElOc0HM0xDTlsSDTdICuvN9gjDlh5BINgFIQjLEh-lj41laqta6OnInWunaVzaOs0bqIcldtnbfHoq0L-2WLTpWRqsOn0oenE6SjTGsT5aptS32NLkyo65vDPULvT4u3-XO8el2-zGerOIcEeEwN5kIwDJliU2pSIjimIqVaKMpNlqXAAQgDBURAWMQo4AURGVc5AKQCRuihz9027rPTvpWV9bkuS1Vr13lJgScMi4Tv0fs_6MZ1TR2mC5QITYM5CNRjT-WN877RRm6bsGqzkwTLvWwZZMtf2YG9OyR2WaWLE3m0G4BJD3zbUu_-T5Kz5aKP_AFHQoaR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399621363</pqid></control><display><type>article</type><title>Estimation of genomic breed composition of individual animals in composite beef cattle</title><source>Access via Wiley Online Library</source><creator>Li, Z. ; Wu, X.‐L. ; Guo, W. ; He, J. ; Li, H. ; Rosa, G. J. M. ; Gianola, D. ; Tait, R. G. ; Parham, J. ; Genho, J. ; Schultz, T. ; Bauck, S.</creator><creatorcontrib>Li, Z. ; Wu, X.‐L. ; Guo, W. ; He, J. ; Li, H. ; Rosa, G. J. M. ; Gianola, D. ; Tait, R. G. ; Parham, J. ; Genho, J. ; Schultz, T. ; Bauck, S.</creatorcontrib><description>Summary
Three statistical models (an admixture model, linear regression, and ridge‐regression BLUP) and two strategies for selecting SNP panels (uniformly spaced vs. maximum Euclidean distance of SNP allele frequencies between ancestral breeds) were compared for estimating genomic‐estimated breed composition (GBC) in Brangus and Santa Gertrudis cattle, respectively. Animals were genotyped with a GeneSeek Genomic Profiler bovine low‐density version 4 SNP chip. The estimated GBC was consistent among the uniformly spaced SNP panels, and values were similar between the three models. However, estimated GBC varied considerably between the three methods when using fewer than 10 000 SNPs that maximized the Euclidean distance of allele frequencies between the ancestral breeds. The admixture model performed most consistently across various SNP panel sizes. For the other two models, stabilized estimates were obtained with an SNP panel size of 20 000 SNPs or more. Based on the uniformly spaced 20K SNP panel, the estimated GBC was 69.8–70.5% Angus and 29.5–30.2% Brahman for Brangus, and 63.9–65.3% Shorthorn and 34.7–36.1% Brahman in Santa Gertrudis. The estimated GBC of ancestries for Santa Gertrudis roughly agreed with the pedigree‐expected values. However, the estimated GBC in Brangus showed a considerably larger Angus composition than the pedigree‐expected value (62.5%). The elevated Angus composition in the Brangus could be due to the mixture of some 1/2 Ultrablack animals (Brangus × Angus). Another reason could be the consequences of selection in Brangus cattle for phenotypes where the Angus breed has advantages.</description><identifier>ISSN: 0268-9146</identifier><identifier>EISSN: 1365-2052</identifier><identifier>DOI: 10.1111/age.12928</identifier><identifier>PMID: 32239777</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>admixture, Bos indicus ; Admixtures ; Alleles ; Animals ; Beef cattle ; Cattle ; composite breeds ; Composition ; Euclidean geometry ; Gene frequency ; Mathematical models ; Panels ; Pedigree ; Phenotypes ; Regression analysis ; Regression models ; Single-nucleotide polymorphism ; SNP ; Statistical analysis ; Statistical models</subject><ispartof>Animal genetics, 2020-06, Vol.51 (3), p.457-460</ispartof><rights>2020 Stichting International Foundation for Animal Genetics</rights><rights>2020 Stichting International Foundation for Animal Genetics.</rights><rights>Copyright © 2020 Stichting International Foundation for Animal Genetics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3538-2f0899703ba742f619802962e9a28fbb63833173a3193914fa38d19b8ac333693</citedby><cites>FETCH-LOGICAL-c3538-2f0899703ba742f619802962e9a28fbb63833173a3193914fa38d19b8ac333693</cites><orcidid>0000-0003-3085-4018 ; 0000-0003-1248-5458 ; 0000-0002-3107-9183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fage.12928$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fage.12928$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32239777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Z.</creatorcontrib><creatorcontrib>Wu, X.‐L.</creatorcontrib><creatorcontrib>Guo, W.</creatorcontrib><creatorcontrib>He, J.</creatorcontrib><creatorcontrib>Li, H.</creatorcontrib><creatorcontrib>Rosa, G. J. M.</creatorcontrib><creatorcontrib>Gianola, D.</creatorcontrib><creatorcontrib>Tait, R. G.</creatorcontrib><creatorcontrib>Parham, J.</creatorcontrib><creatorcontrib>Genho, J.</creatorcontrib><creatorcontrib>Schultz, T.</creatorcontrib><creatorcontrib>Bauck, S.</creatorcontrib><title>Estimation of genomic breed composition of individual animals in composite beef cattle</title><title>Animal genetics</title><addtitle>Anim Genet</addtitle><description>Summary
Three statistical models (an admixture model, linear regression, and ridge‐regression BLUP) and two strategies for selecting SNP panels (uniformly spaced vs. maximum Euclidean distance of SNP allele frequencies between ancestral breeds) were compared for estimating genomic‐estimated breed composition (GBC) in Brangus and Santa Gertrudis cattle, respectively. Animals were genotyped with a GeneSeek Genomic Profiler bovine low‐density version 4 SNP chip. The estimated GBC was consistent among the uniformly spaced SNP panels, and values were similar between the three models. However, estimated GBC varied considerably between the three methods when using fewer than 10 000 SNPs that maximized the Euclidean distance of allele frequencies between the ancestral breeds. The admixture model performed most consistently across various SNP panel sizes. For the other two models, stabilized estimates were obtained with an SNP panel size of 20 000 SNPs or more. Based on the uniformly spaced 20K SNP panel, the estimated GBC was 69.8–70.5% Angus and 29.5–30.2% Brahman for Brangus, and 63.9–65.3% Shorthorn and 34.7–36.1% Brahman in Santa Gertrudis. The estimated GBC of ancestries for Santa Gertrudis roughly agreed with the pedigree‐expected values. However, the estimated GBC in Brangus showed a considerably larger Angus composition than the pedigree‐expected value (62.5%). The elevated Angus composition in the Brangus could be due to the mixture of some 1/2 Ultrablack animals (Brangus × Angus). Another reason could be the consequences of selection in Brangus cattle for phenotypes where the Angus breed has advantages.</description><subject>admixture, Bos indicus</subject><subject>Admixtures</subject><subject>Alleles</subject><subject>Animals</subject><subject>Beef cattle</subject><subject>Cattle</subject><subject>composite breeds</subject><subject>Composition</subject><subject>Euclidean geometry</subject><subject>Gene frequency</subject><subject>Mathematical models</subject><subject>Panels</subject><subject>Pedigree</subject><subject>Phenotypes</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Single-nucleotide polymorphism</subject><subject>SNP</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><issn>0268-9146</issn><issn>1365-2052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAUx4Mobk4PfgEpeNFDtyRvbZLjGHMKAy_qNaRtMjLaZjatsm9vZrcdBHMJ5P3yf-_9ELoleEzCmai1HhMqKD9DQwJpElOc0HM0xDTlsSDTdICuvN9gjDlh5BINgFIQjLEh-lj41laqta6OnInWunaVzaOs0bqIcldtnbfHoq0L-2WLTpWRqsOn0oenE6SjTGsT5aptS32NLkyo65vDPULvT4u3-XO8el2-zGerOIcEeEwN5kIwDJliU2pSIjimIqVaKMpNlqXAAQgDBURAWMQo4AURGVc5AKQCRuihz9027rPTvpWV9bkuS1Vr13lJgScMi4Tv0fs_6MZ1TR2mC5QITYM5CNRjT-WN877RRm6bsGqzkwTLvWwZZMtf2YG9OyR2WaWLE3m0G4BJD3zbUu_-T5Kz5aKP_AFHQoaR</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Li, Z.</creator><creator>Wu, X.‐L.</creator><creator>Guo, W.</creator><creator>He, J.</creator><creator>Li, H.</creator><creator>Rosa, G. J. M.</creator><creator>Gianola, D.</creator><creator>Tait, R. G.</creator><creator>Parham, J.</creator><creator>Genho, J.</creator><creator>Schultz, T.</creator><creator>Bauck, S.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3085-4018</orcidid><orcidid>https://orcid.org/0000-0003-1248-5458</orcidid><orcidid>https://orcid.org/0000-0002-3107-9183</orcidid></search><sort><creationdate>202006</creationdate><title>Estimation of genomic breed composition of individual animals in composite beef cattle</title><author>Li, Z. ; Wu, X.‐L. ; Guo, W. ; He, J. ; Li, H. ; Rosa, G. J. M. ; Gianola, D. ; Tait, R. G. ; Parham, J. ; Genho, J. ; Schultz, T. ; Bauck, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3538-2f0899703ba742f619802962e9a28fbb63833173a3193914fa38d19b8ac333693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>admixture, Bos indicus</topic><topic>Admixtures</topic><topic>Alleles</topic><topic>Animals</topic><topic>Beef cattle</topic><topic>Cattle</topic><topic>composite breeds</topic><topic>Composition</topic><topic>Euclidean geometry</topic><topic>Gene frequency</topic><topic>Mathematical models</topic><topic>Panels</topic><topic>Pedigree</topic><topic>Phenotypes</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Single-nucleotide polymorphism</topic><topic>SNP</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Z.</creatorcontrib><creatorcontrib>Wu, X.‐L.</creatorcontrib><creatorcontrib>Guo, W.</creatorcontrib><creatorcontrib>He, J.</creatorcontrib><creatorcontrib>Li, H.</creatorcontrib><creatorcontrib>Rosa, G. J. M.</creatorcontrib><creatorcontrib>Gianola, D.</creatorcontrib><creatorcontrib>Tait, R. G.</creatorcontrib><creatorcontrib>Parham, J.</creatorcontrib><creatorcontrib>Genho, J.</creatorcontrib><creatorcontrib>Schultz, T.</creatorcontrib><creatorcontrib>Bauck, S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Animal genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Z.</au><au>Wu, X.‐L.</au><au>Guo, W.</au><au>He, J.</au><au>Li, H.</au><au>Rosa, G. J. M.</au><au>Gianola, D.</au><au>Tait, R. G.</au><au>Parham, J.</au><au>Genho, J.</au><au>Schultz, T.</au><au>Bauck, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of genomic breed composition of individual animals in composite beef cattle</atitle><jtitle>Animal genetics</jtitle><addtitle>Anim Genet</addtitle><date>2020-06</date><risdate>2020</risdate><volume>51</volume><issue>3</issue><spage>457</spage><epage>460</epage><pages>457-460</pages><issn>0268-9146</issn><eissn>1365-2052</eissn><abstract>Summary
Three statistical models (an admixture model, linear regression, and ridge‐regression BLUP) and two strategies for selecting SNP panels (uniformly spaced vs. maximum Euclidean distance of SNP allele frequencies between ancestral breeds) were compared for estimating genomic‐estimated breed composition (GBC) in Brangus and Santa Gertrudis cattle, respectively. Animals were genotyped with a GeneSeek Genomic Profiler bovine low‐density version 4 SNP chip. The estimated GBC was consistent among the uniformly spaced SNP panels, and values were similar between the three models. However, estimated GBC varied considerably between the three methods when using fewer than 10 000 SNPs that maximized the Euclidean distance of allele frequencies between the ancestral breeds. The admixture model performed most consistently across various SNP panel sizes. For the other two models, stabilized estimates were obtained with an SNP panel size of 20 000 SNPs or more. Based on the uniformly spaced 20K SNP panel, the estimated GBC was 69.8–70.5% Angus and 29.5–30.2% Brahman for Brangus, and 63.9–65.3% Shorthorn and 34.7–36.1% Brahman in Santa Gertrudis. The estimated GBC of ancestries for Santa Gertrudis roughly agreed with the pedigree‐expected values. However, the estimated GBC in Brangus showed a considerably larger Angus composition than the pedigree‐expected value (62.5%). The elevated Angus composition in the Brangus could be due to the mixture of some 1/2 Ultrablack animals (Brangus × Angus). Another reason could be the consequences of selection in Brangus cattle for phenotypes where the Angus breed has advantages.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32239777</pmid><doi>10.1111/age.12928</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-3085-4018</orcidid><orcidid>https://orcid.org/0000-0003-1248-5458</orcidid><orcidid>https://orcid.org/0000-0002-3107-9183</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-9146 |
ispartof | Animal genetics, 2020-06, Vol.51 (3), p.457-460 |
issn | 0268-9146 1365-2052 |
language | eng |
recordid | cdi_proquest_miscellaneous_2385709589 |
source | Access via Wiley Online Library |
subjects | admixture, Bos indicus Admixtures Alleles Animals Beef cattle Cattle composite breeds Composition Euclidean geometry Gene frequency Mathematical models Panels Pedigree Phenotypes Regression analysis Regression models Single-nucleotide polymorphism SNP Statistical analysis Statistical models |
title | Estimation of genomic breed composition of individual animals in composite beef cattle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20genomic%20breed%20composition%20of%20individual%20animals%20in%20composite%20beef%20cattle&rft.jtitle=Animal%20genetics&rft.au=Li,%20Z.&rft.date=2020-06&rft.volume=51&rft.issue=3&rft.spage=457&rft.epage=460&rft.pages=457-460&rft.issn=0268-9146&rft.eissn=1365-2052&rft_id=info:doi/10.1111/age.12928&rft_dat=%3Cproquest_cross%3E2399621363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399621363&rft_id=info:pmid/32239777&rfr_iscdi=true |