Estimation of genomic breed composition of individual animals in composite beef cattle

Summary Three statistical models (an admixture model, linear regression, and ridge‐regression BLUP) and two strategies for selecting SNP panels (uniformly spaced vs. maximum Euclidean distance of SNP allele frequencies between ancestral breeds) were compared for estimating genomic‐estimated breed co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Animal genetics 2020-06, Vol.51 (3), p.457-460
Hauptverfasser: Li, Z., Wu, X.‐L., Guo, W., He, J., Li, H., Rosa, G. J. M., Gianola, D., Tait, R. G., Parham, J., Genho, J., Schultz, T., Bauck, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 460
container_issue 3
container_start_page 457
container_title Animal genetics
container_volume 51
creator Li, Z.
Wu, X.‐L.
Guo, W.
He, J.
Li, H.
Rosa, G. J. M.
Gianola, D.
Tait, R. G.
Parham, J.
Genho, J.
Schultz, T.
Bauck, S.
description Summary Three statistical models (an admixture model, linear regression, and ridge‐regression BLUP) and two strategies for selecting SNP panels (uniformly spaced vs. maximum Euclidean distance of SNP allele frequencies between ancestral breeds) were compared for estimating genomic‐estimated breed composition (GBC) in Brangus and Santa Gertrudis cattle, respectively. Animals were genotyped with a GeneSeek Genomic Profiler bovine low‐density version 4 SNP chip. The estimated GBC was consistent among the uniformly spaced SNP panels, and values were similar between the three models. However, estimated GBC varied considerably between the three methods when using fewer than 10 000 SNPs that maximized the Euclidean distance of allele frequencies between the ancestral breeds. The admixture model performed most consistently across various SNP panel sizes. For the other two models, stabilized estimates were obtained with an SNP panel size of 20 000 SNPs or more. Based on the uniformly spaced 20K SNP panel, the estimated GBC was 69.8–70.5% Angus and 29.5–30.2% Brahman for Brangus, and 63.9–65.3% Shorthorn and 34.7–36.1% Brahman in Santa Gertrudis. The estimated GBC of ancestries for Santa Gertrudis roughly agreed with the pedigree‐expected values. However, the estimated GBC in Brangus showed a considerably larger Angus composition than the pedigree‐expected value (62.5%). The elevated Angus composition in the Brangus could be due to the mixture of some 1/2 Ultrablack animals (Brangus × Angus). Another reason could be the consequences of selection in Brangus cattle for phenotypes where the Angus breed has advantages.
doi_str_mv 10.1111/age.12928
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2385709589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399621363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3538-2f0899703ba742f619802962e9a28fbb63833173a3193914fa38d19b8ac333693</originalsourceid><addsrcrecordid>eNp1kEFLwzAUx4Mobk4PfgEpeNFDtyRvbZLjGHMKAy_qNaRtMjLaZjatsm9vZrcdBHMJ5P3yf-_9ELoleEzCmai1HhMqKD9DQwJpElOc0HM0xDTlsSDTdICuvN9gjDlh5BINgFIQjLEh-lj41laqta6OnInWunaVzaOs0bqIcldtnbfHoq0L-2WLTpWRqsOn0oenE6SjTGsT5aptS32NLkyo65vDPULvT4u3-XO8el2-zGerOIcEeEwN5kIwDJliU2pSIjimIqVaKMpNlqXAAQgDBURAWMQo4AURGVc5AKQCRuihz9027rPTvpWV9bkuS1Vr13lJgScMi4Tv0fs_6MZ1TR2mC5QITYM5CNRjT-WN877RRm6bsGqzkwTLvWwZZMtf2YG9OyR2WaWLE3m0G4BJD3zbUu_-T5Kz5aKP_AFHQoaR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399621363</pqid></control><display><type>article</type><title>Estimation of genomic breed composition of individual animals in composite beef cattle</title><source>Access via Wiley Online Library</source><creator>Li, Z. ; Wu, X.‐L. ; Guo, W. ; He, J. ; Li, H. ; Rosa, G. J. M. ; Gianola, D. ; Tait, R. G. ; Parham, J. ; Genho, J. ; Schultz, T. ; Bauck, S.</creator><creatorcontrib>Li, Z. ; Wu, X.‐L. ; Guo, W. ; He, J. ; Li, H. ; Rosa, G. J. M. ; Gianola, D. ; Tait, R. G. ; Parham, J. ; Genho, J. ; Schultz, T. ; Bauck, S.</creatorcontrib><description>Summary Three statistical models (an admixture model, linear regression, and ridge‐regression BLUP) and two strategies for selecting SNP panels (uniformly spaced vs. maximum Euclidean distance of SNP allele frequencies between ancestral breeds) were compared for estimating genomic‐estimated breed composition (GBC) in Brangus and Santa Gertrudis cattle, respectively. Animals were genotyped with a GeneSeek Genomic Profiler bovine low‐density version 4 SNP chip. The estimated GBC was consistent among the uniformly spaced SNP panels, and values were similar between the three models. However, estimated GBC varied considerably between the three methods when using fewer than 10 000 SNPs that maximized the Euclidean distance of allele frequencies between the ancestral breeds. The admixture model performed most consistently across various SNP panel sizes. For the other two models, stabilized estimates were obtained with an SNP panel size of 20 000 SNPs or more. Based on the uniformly spaced 20K SNP panel, the estimated GBC was 69.8–70.5% Angus and 29.5–30.2% Brahman for Brangus, and 63.9–65.3% Shorthorn and 34.7–36.1% Brahman in Santa Gertrudis. The estimated GBC of ancestries for Santa Gertrudis roughly agreed with the pedigree‐expected values. However, the estimated GBC in Brangus showed a considerably larger Angus composition than the pedigree‐expected value (62.5%). The elevated Angus composition in the Brangus could be due to the mixture of some 1/2 Ultrablack animals (Brangus × Angus). Another reason could be the consequences of selection in Brangus cattle for phenotypes where the Angus breed has advantages.</description><identifier>ISSN: 0268-9146</identifier><identifier>EISSN: 1365-2052</identifier><identifier>DOI: 10.1111/age.12928</identifier><identifier>PMID: 32239777</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>admixture, Bos indicus ; Admixtures ; Alleles ; Animals ; Beef cattle ; Cattle ; composite breeds ; Composition ; Euclidean geometry ; Gene frequency ; Mathematical models ; Panels ; Pedigree ; Phenotypes ; Regression analysis ; Regression models ; Single-nucleotide polymorphism ; SNP ; Statistical analysis ; Statistical models</subject><ispartof>Animal genetics, 2020-06, Vol.51 (3), p.457-460</ispartof><rights>2020 Stichting International Foundation for Animal Genetics</rights><rights>2020 Stichting International Foundation for Animal Genetics.</rights><rights>Copyright © 2020 Stichting International Foundation for Animal Genetics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3538-2f0899703ba742f619802962e9a28fbb63833173a3193914fa38d19b8ac333693</citedby><cites>FETCH-LOGICAL-c3538-2f0899703ba742f619802962e9a28fbb63833173a3193914fa38d19b8ac333693</cites><orcidid>0000-0003-3085-4018 ; 0000-0003-1248-5458 ; 0000-0002-3107-9183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fage.12928$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fage.12928$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32239777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Z.</creatorcontrib><creatorcontrib>Wu, X.‐L.</creatorcontrib><creatorcontrib>Guo, W.</creatorcontrib><creatorcontrib>He, J.</creatorcontrib><creatorcontrib>Li, H.</creatorcontrib><creatorcontrib>Rosa, G. J. M.</creatorcontrib><creatorcontrib>Gianola, D.</creatorcontrib><creatorcontrib>Tait, R. G.</creatorcontrib><creatorcontrib>Parham, J.</creatorcontrib><creatorcontrib>Genho, J.</creatorcontrib><creatorcontrib>Schultz, T.</creatorcontrib><creatorcontrib>Bauck, S.</creatorcontrib><title>Estimation of genomic breed composition of individual animals in composite beef cattle</title><title>Animal genetics</title><addtitle>Anim Genet</addtitle><description>Summary Three statistical models (an admixture model, linear regression, and ridge‐regression BLUP) and two strategies for selecting SNP panels (uniformly spaced vs. maximum Euclidean distance of SNP allele frequencies between ancestral breeds) were compared for estimating genomic‐estimated breed composition (GBC) in Brangus and Santa Gertrudis cattle, respectively. Animals were genotyped with a GeneSeek Genomic Profiler bovine low‐density version 4 SNP chip. The estimated GBC was consistent among the uniformly spaced SNP panels, and values were similar between the three models. However, estimated GBC varied considerably between the three methods when using fewer than 10 000 SNPs that maximized the Euclidean distance of allele frequencies between the ancestral breeds. The admixture model performed most consistently across various SNP panel sizes. For the other two models, stabilized estimates were obtained with an SNP panel size of 20 000 SNPs or more. Based on the uniformly spaced 20K SNP panel, the estimated GBC was 69.8–70.5% Angus and 29.5–30.2% Brahman for Brangus, and 63.9–65.3% Shorthorn and 34.7–36.1% Brahman in Santa Gertrudis. The estimated GBC of ancestries for Santa Gertrudis roughly agreed with the pedigree‐expected values. However, the estimated GBC in Brangus showed a considerably larger Angus composition than the pedigree‐expected value (62.5%). The elevated Angus composition in the Brangus could be due to the mixture of some 1/2 Ultrablack animals (Brangus × Angus). Another reason could be the consequences of selection in Brangus cattle for phenotypes where the Angus breed has advantages.</description><subject>admixture, Bos indicus</subject><subject>Admixtures</subject><subject>Alleles</subject><subject>Animals</subject><subject>Beef cattle</subject><subject>Cattle</subject><subject>composite breeds</subject><subject>Composition</subject><subject>Euclidean geometry</subject><subject>Gene frequency</subject><subject>Mathematical models</subject><subject>Panels</subject><subject>Pedigree</subject><subject>Phenotypes</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Single-nucleotide polymorphism</subject><subject>SNP</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><issn>0268-9146</issn><issn>1365-2052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAUx4Mobk4PfgEpeNFDtyRvbZLjGHMKAy_qNaRtMjLaZjatsm9vZrcdBHMJ5P3yf-_9ELoleEzCmai1HhMqKD9DQwJpElOc0HM0xDTlsSDTdICuvN9gjDlh5BINgFIQjLEh-lj41laqta6OnInWunaVzaOs0bqIcldtnbfHoq0L-2WLTpWRqsOn0oenE6SjTGsT5aptS32NLkyo65vDPULvT4u3-XO8el2-zGerOIcEeEwN5kIwDJliU2pSIjimIqVaKMpNlqXAAQgDBURAWMQo4AURGVc5AKQCRuihz9027rPTvpWV9bkuS1Vr13lJgScMi4Tv0fs_6MZ1TR2mC5QITYM5CNRjT-WN877RRm6bsGqzkwTLvWwZZMtf2YG9OyR2WaWLE3m0G4BJD3zbUu_-T5Kz5aKP_AFHQoaR</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Li, Z.</creator><creator>Wu, X.‐L.</creator><creator>Guo, W.</creator><creator>He, J.</creator><creator>Li, H.</creator><creator>Rosa, G. J. M.</creator><creator>Gianola, D.</creator><creator>Tait, R. G.</creator><creator>Parham, J.</creator><creator>Genho, J.</creator><creator>Schultz, T.</creator><creator>Bauck, S.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3085-4018</orcidid><orcidid>https://orcid.org/0000-0003-1248-5458</orcidid><orcidid>https://orcid.org/0000-0002-3107-9183</orcidid></search><sort><creationdate>202006</creationdate><title>Estimation of genomic breed composition of individual animals in composite beef cattle</title><author>Li, Z. ; Wu, X.‐L. ; Guo, W. ; He, J. ; Li, H. ; Rosa, G. J. M. ; Gianola, D. ; Tait, R. G. ; Parham, J. ; Genho, J. ; Schultz, T. ; Bauck, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3538-2f0899703ba742f619802962e9a28fbb63833173a3193914fa38d19b8ac333693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>admixture, Bos indicus</topic><topic>Admixtures</topic><topic>Alleles</topic><topic>Animals</topic><topic>Beef cattle</topic><topic>Cattle</topic><topic>composite breeds</topic><topic>Composition</topic><topic>Euclidean geometry</topic><topic>Gene frequency</topic><topic>Mathematical models</topic><topic>Panels</topic><topic>Pedigree</topic><topic>Phenotypes</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Single-nucleotide polymorphism</topic><topic>SNP</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Z.</creatorcontrib><creatorcontrib>Wu, X.‐L.</creatorcontrib><creatorcontrib>Guo, W.</creatorcontrib><creatorcontrib>He, J.</creatorcontrib><creatorcontrib>Li, H.</creatorcontrib><creatorcontrib>Rosa, G. J. M.</creatorcontrib><creatorcontrib>Gianola, D.</creatorcontrib><creatorcontrib>Tait, R. G.</creatorcontrib><creatorcontrib>Parham, J.</creatorcontrib><creatorcontrib>Genho, J.</creatorcontrib><creatorcontrib>Schultz, T.</creatorcontrib><creatorcontrib>Bauck, S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Animal genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Z.</au><au>Wu, X.‐L.</au><au>Guo, W.</au><au>He, J.</au><au>Li, H.</au><au>Rosa, G. J. M.</au><au>Gianola, D.</au><au>Tait, R. G.</au><au>Parham, J.</au><au>Genho, J.</au><au>Schultz, T.</au><au>Bauck, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of genomic breed composition of individual animals in composite beef cattle</atitle><jtitle>Animal genetics</jtitle><addtitle>Anim Genet</addtitle><date>2020-06</date><risdate>2020</risdate><volume>51</volume><issue>3</issue><spage>457</spage><epage>460</epage><pages>457-460</pages><issn>0268-9146</issn><eissn>1365-2052</eissn><abstract>Summary Three statistical models (an admixture model, linear regression, and ridge‐regression BLUP) and two strategies for selecting SNP panels (uniformly spaced vs. maximum Euclidean distance of SNP allele frequencies between ancestral breeds) were compared for estimating genomic‐estimated breed composition (GBC) in Brangus and Santa Gertrudis cattle, respectively. Animals were genotyped with a GeneSeek Genomic Profiler bovine low‐density version 4 SNP chip. The estimated GBC was consistent among the uniformly spaced SNP panels, and values were similar between the three models. However, estimated GBC varied considerably between the three methods when using fewer than 10 000 SNPs that maximized the Euclidean distance of allele frequencies between the ancestral breeds. The admixture model performed most consistently across various SNP panel sizes. For the other two models, stabilized estimates were obtained with an SNP panel size of 20 000 SNPs or more. Based on the uniformly spaced 20K SNP panel, the estimated GBC was 69.8–70.5% Angus and 29.5–30.2% Brahman for Brangus, and 63.9–65.3% Shorthorn and 34.7–36.1% Brahman in Santa Gertrudis. The estimated GBC of ancestries for Santa Gertrudis roughly agreed with the pedigree‐expected values. However, the estimated GBC in Brangus showed a considerably larger Angus composition than the pedigree‐expected value (62.5%). The elevated Angus composition in the Brangus could be due to the mixture of some 1/2 Ultrablack animals (Brangus × Angus). Another reason could be the consequences of selection in Brangus cattle for phenotypes where the Angus breed has advantages.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32239777</pmid><doi>10.1111/age.12928</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-3085-4018</orcidid><orcidid>https://orcid.org/0000-0003-1248-5458</orcidid><orcidid>https://orcid.org/0000-0002-3107-9183</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-9146
ispartof Animal genetics, 2020-06, Vol.51 (3), p.457-460
issn 0268-9146
1365-2052
language eng
recordid cdi_proquest_miscellaneous_2385709589
source Access via Wiley Online Library
subjects admixture, Bos indicus
Admixtures
Alleles
Animals
Beef cattle
Cattle
composite breeds
Composition
Euclidean geometry
Gene frequency
Mathematical models
Panels
Pedigree
Phenotypes
Regression analysis
Regression models
Single-nucleotide polymorphism
SNP
Statistical analysis
Statistical models
title Estimation of genomic breed composition of individual animals in composite beef cattle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20genomic%20breed%20composition%20of%20individual%20animals%20in%20composite%20beef%20cattle&rft.jtitle=Animal%20genetics&rft.au=Li,%20Z.&rft.date=2020-06&rft.volume=51&rft.issue=3&rft.spage=457&rft.epage=460&rft.pages=457-460&rft.issn=0268-9146&rft.eissn=1365-2052&rft_id=info:doi/10.1111/age.12928&rft_dat=%3Cproquest_cross%3E2399621363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399621363&rft_id=info:pmid/32239777&rfr_iscdi=true