The mechanism of sublethal chlorantraniliprole exposure causing silkworm pupation metamorphosis defects

BACKGROUND Chlorantraniliprole (CAP) is widely used in agriculture and forestry to prevent and control pests. The effects of environmental CAP residue on non‐target insect metamorphosis have not been reported. Our research aimed to investigate the sublethal effect of CAP on larva–pupa transformation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pest management science 2020-08, Vol.76 (8), p.2838-2845
Hauptverfasser: Chen, Jian, Lu, Zhengting, Li, Mengxue, Mao, Tingting, Wang, Hui, Li, Fanchi, Sun, Haina, Dai, Minli, Ye, Wentao, Li, Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2845
container_issue 8
container_start_page 2838
container_title Pest management science
container_volume 76
creator Chen, Jian
Lu, Zhengting
Li, Mengxue
Mao, Tingting
Wang, Hui
Li, Fanchi
Sun, Haina
Dai, Minli
Ye, Wentao
Li, Bing
description BACKGROUND Chlorantraniliprole (CAP) is widely used in agriculture and forestry to prevent and control pests. The effects of environmental CAP residue on non‐target insect metamorphosis have not been reported. Our research aimed to investigate the sublethal effect of CAP on larva–pupa transformation in silkworm, and explore the mechanism of sublethal CAP exposure‐mediated pupation metamorphosis defects. RESULT Sublethal CAP exposure affected the growth and development of silkworm larvae and caused defects in pupation metamorphosis. After CAP exposure, formation the of prepupa procuticle, ecdysial membrane and new epidermis was inhibited. Also, the level of 20‐hydroxyecdysone (20E) and mRNA levels of the 20E signaling pathway‐related genes EcR, USP, E74, E75 and Ftz‐f1 were significantly reduced. Moreover, genes involved in chitin synthesis, such as ChsA, CDA1 and CDA2, were downregulated. Injection of 20E led to the upregulation of chitin synthesis‐related genes and increased formation of new epidermis in CAP‐treated silkworm. However, injection of 20E failed to prevent downregulation of Ftz‐f1 and the defects in pupation metamorphosis. CONCLUSION Our results suggested that 20E is a target hormone of CAP exposure‐mediated epidermis formation phenotype. Ftz‐f1 was silenced by CAP and might be a direct target gene of sublethal CAP exposure. Our study provided new evidence of the effects of sublethal CAP exposure on insect development and metamorphosis. © 2020 Society of Chemical Industry Sublethal chlorantraniliprole (CAP) exposure causes pupation metamorphosis defects in silkworm. Our study suggests that CAP acts on the 20‐hydroxyecdysone (20E) signaling pathway and Ftz‐f1 is the target of CAP‐induced pupation failure. © 2020 Society of Chemical Industry
doi_str_mv 10.1002/ps.5836
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2385709343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385709343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3456-5aa5099b40470713cf41da14255eb183ae78b1bed11d9ba9eb87a5cb02b4cf163</originalsourceid><addsrcrecordid>eNp1kE1rFjEURoMotr6K_0ACLizIW_M5H8tSrBYKCrbQXUgydzqpmcmYO0Pbf2_q23ZRcBFuFofDwyHkPWeHnDHxZcZD3cjqBdnnWlRb1bbNy6d_c7lH3iBeM8bathWvyZ4UQtZMin1ydT4AHcEPdgo40tRTXF2EZbCR-iGmbKelvBDDnFMECrdzwjUD9XbFMF1RDPH3TcojndfZLiFNxbbYMeV5SBiQdtCDX_AtedXbiPDu4W7IxcnX8-Pv27Mf306Pj862XipdbbW1uox0iqma1Vz6XvHOciW0BscbaaFuHHfQcd61zrbgmtpq75hwyve8khtysPOWuX9WwMWMAT3EaCdIKxohG12zVipZ0I_P0Ou05qmsM0IJrpisStMN-bSjfE6IGXoz5zDafGc4M_ftzYzmvn0hPzz4VjdC98Q9xi7A5x1wEyLc_c9jfv76p_sL8RiOaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421403658</pqid></control><display><type>article</type><title>The mechanism of sublethal chlorantraniliprole exposure causing silkworm pupation metamorphosis defects</title><source>Access via Wiley Online Library</source><creator>Chen, Jian ; Lu, Zhengting ; Li, Mengxue ; Mao, Tingting ; Wang, Hui ; Li, Fanchi ; Sun, Haina ; Dai, Minli ; Ye, Wentao ; Li, Bing</creator><creatorcontrib>Chen, Jian ; Lu, Zhengting ; Li, Mengxue ; Mao, Tingting ; Wang, Hui ; Li, Fanchi ; Sun, Haina ; Dai, Minli ; Ye, Wentao ; Li, Bing</creatorcontrib><description>BACKGROUND Chlorantraniliprole (CAP) is widely used in agriculture and forestry to prevent and control pests. The effects of environmental CAP residue on non‐target insect metamorphosis have not been reported. Our research aimed to investigate the sublethal effect of CAP on larva–pupa transformation in silkworm, and explore the mechanism of sublethal CAP exposure‐mediated pupation metamorphosis defects. RESULT Sublethal CAP exposure affected the growth and development of silkworm larvae and caused defects in pupation metamorphosis. After CAP exposure, formation the of prepupa procuticle, ecdysial membrane and new epidermis was inhibited. Also, the level of 20‐hydroxyecdysone (20E) and mRNA levels of the 20E signaling pathway‐related genes EcR, USP, E74, E75 and Ftz‐f1 were significantly reduced. Moreover, genes involved in chitin synthesis, such as ChsA, CDA1 and CDA2, were downregulated. Injection of 20E led to the upregulation of chitin synthesis‐related genes and increased formation of new epidermis in CAP‐treated silkworm. However, injection of 20E failed to prevent downregulation of Ftz‐f1 and the defects in pupation metamorphosis. CONCLUSION Our results suggested that 20E is a target hormone of CAP exposure‐mediated epidermis formation phenotype. Ftz‐f1 was silenced by CAP and might be a direct target gene of sublethal CAP exposure. Our study provided new evidence of the effects of sublethal CAP exposure on insect development and metamorphosis. © 2020 Society of Chemical Industry Sublethal chlorantraniliprole (CAP) exposure causes pupation metamorphosis defects in silkworm. Our study suggests that CAP acts on the 20‐hydroxyecdysone (20E) signaling pathway and Ftz‐f1 is the target of CAP‐induced pupation failure. © 2020 Society of Chemical Industry</description><identifier>ISSN: 1526-498X</identifier><identifier>EISSN: 1526-4998</identifier><identifier>DOI: 10.1002/ps.5836</identifier><identifier>PMID: 32237032</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>20E ; Bombyx mori ; Chitin ; chlorantraniliprole ; Defects ; Environmental effects ; Epidermis ; Exposure ; Forestry ; Ftz‐f1 ; Genes ; Injection ; Insecticides ; Insects ; Larvae ; Metamorphosis ; metamorphosis defects ; mRNA ; Pest control ; Pests ; Phenotypes ; Pupae ; Pupation ; Signal transduction ; Silkworms ; Synthesis</subject><ispartof>Pest management science, 2020-08, Vol.76 (8), p.2838-2845</ispartof><rights>2020 Society of Chemical Industry</rights><rights>2020 Society of Chemical Industry.</rights><rights>Copyright © 2020 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3456-5aa5099b40470713cf41da14255eb183ae78b1bed11d9ba9eb87a5cb02b4cf163</citedby><cites>FETCH-LOGICAL-c3456-5aa5099b40470713cf41da14255eb183ae78b1bed11d9ba9eb87a5cb02b4cf163</cites><orcidid>0000-0002-3331-5266 ; 0000-0002-8647-7533 ; 0000-0002-2072-2444 ; 0000-0003-3818-9817 ; 0000-0003-1315-4706 ; 0000-0001-6504-2728 ; 0000-0002-7640-9019 ; 0000-0002-5380-8359 ; 0000-0002-6554-2551 ; 0000-0002-1843-8081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fps.5836$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fps.5836$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32237032$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Lu, Zhengting</creatorcontrib><creatorcontrib>Li, Mengxue</creatorcontrib><creatorcontrib>Mao, Tingting</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Li, Fanchi</creatorcontrib><creatorcontrib>Sun, Haina</creatorcontrib><creatorcontrib>Dai, Minli</creatorcontrib><creatorcontrib>Ye, Wentao</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><title>The mechanism of sublethal chlorantraniliprole exposure causing silkworm pupation metamorphosis defects</title><title>Pest management science</title><addtitle>Pest Manag Sci</addtitle><description>BACKGROUND Chlorantraniliprole (CAP) is widely used in agriculture and forestry to prevent and control pests. The effects of environmental CAP residue on non‐target insect metamorphosis have not been reported. Our research aimed to investigate the sublethal effect of CAP on larva–pupa transformation in silkworm, and explore the mechanism of sublethal CAP exposure‐mediated pupation metamorphosis defects. RESULT Sublethal CAP exposure affected the growth and development of silkworm larvae and caused defects in pupation metamorphosis. After CAP exposure, formation the of prepupa procuticle, ecdysial membrane and new epidermis was inhibited. Also, the level of 20‐hydroxyecdysone (20E) and mRNA levels of the 20E signaling pathway‐related genes EcR, USP, E74, E75 and Ftz‐f1 were significantly reduced. Moreover, genes involved in chitin synthesis, such as ChsA, CDA1 and CDA2, were downregulated. Injection of 20E led to the upregulation of chitin synthesis‐related genes and increased formation of new epidermis in CAP‐treated silkworm. However, injection of 20E failed to prevent downregulation of Ftz‐f1 and the defects in pupation metamorphosis. CONCLUSION Our results suggested that 20E is a target hormone of CAP exposure‐mediated epidermis formation phenotype. Ftz‐f1 was silenced by CAP and might be a direct target gene of sublethal CAP exposure. Our study provided new evidence of the effects of sublethal CAP exposure on insect development and metamorphosis. © 2020 Society of Chemical Industry Sublethal chlorantraniliprole (CAP) exposure causes pupation metamorphosis defects in silkworm. Our study suggests that CAP acts on the 20‐hydroxyecdysone (20E) signaling pathway and Ftz‐f1 is the target of CAP‐induced pupation failure. © 2020 Society of Chemical Industry</description><subject>20E</subject><subject>Bombyx mori</subject><subject>Chitin</subject><subject>chlorantraniliprole</subject><subject>Defects</subject><subject>Environmental effects</subject><subject>Epidermis</subject><subject>Exposure</subject><subject>Forestry</subject><subject>Ftz‐f1</subject><subject>Genes</subject><subject>Injection</subject><subject>Insecticides</subject><subject>Insects</subject><subject>Larvae</subject><subject>Metamorphosis</subject><subject>metamorphosis defects</subject><subject>mRNA</subject><subject>Pest control</subject><subject>Pests</subject><subject>Phenotypes</subject><subject>Pupae</subject><subject>Pupation</subject><subject>Signal transduction</subject><subject>Silkworms</subject><subject>Synthesis</subject><issn>1526-498X</issn><issn>1526-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1rFjEURoMotr6K_0ACLizIW_M5H8tSrBYKCrbQXUgydzqpmcmYO0Pbf2_q23ZRcBFuFofDwyHkPWeHnDHxZcZD3cjqBdnnWlRb1bbNy6d_c7lH3iBeM8bathWvyZ4UQtZMin1ydT4AHcEPdgo40tRTXF2EZbCR-iGmbKelvBDDnFMECrdzwjUD9XbFMF1RDPH3TcojndfZLiFNxbbYMeV5SBiQdtCDX_AtedXbiPDu4W7IxcnX8-Pv27Mf306Pj862XipdbbW1uox0iqma1Vz6XvHOciW0BscbaaFuHHfQcd61zrbgmtpq75hwyve8khtysPOWuX9WwMWMAT3EaCdIKxohG12zVipZ0I_P0Ou05qmsM0IJrpisStMN-bSjfE6IGXoz5zDafGc4M_ftzYzmvn0hPzz4VjdC98Q9xi7A5x1wEyLc_c9jfv76p_sL8RiOaA</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Chen, Jian</creator><creator>Lu, Zhengting</creator><creator>Li, Mengxue</creator><creator>Mao, Tingting</creator><creator>Wang, Hui</creator><creator>Li, Fanchi</creator><creator>Sun, Haina</creator><creator>Dai, Minli</creator><creator>Ye, Wentao</creator><creator>Li, Bing</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3331-5266</orcidid><orcidid>https://orcid.org/0000-0002-8647-7533</orcidid><orcidid>https://orcid.org/0000-0002-2072-2444</orcidid><orcidid>https://orcid.org/0000-0003-3818-9817</orcidid><orcidid>https://orcid.org/0000-0003-1315-4706</orcidid><orcidid>https://orcid.org/0000-0001-6504-2728</orcidid><orcidid>https://orcid.org/0000-0002-7640-9019</orcidid><orcidid>https://orcid.org/0000-0002-5380-8359</orcidid><orcidid>https://orcid.org/0000-0002-6554-2551</orcidid><orcidid>https://orcid.org/0000-0002-1843-8081</orcidid></search><sort><creationdate>202008</creationdate><title>The mechanism of sublethal chlorantraniliprole exposure causing silkworm pupation metamorphosis defects</title><author>Chen, Jian ; Lu, Zhengting ; Li, Mengxue ; Mao, Tingting ; Wang, Hui ; Li, Fanchi ; Sun, Haina ; Dai, Minli ; Ye, Wentao ; Li, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3456-5aa5099b40470713cf41da14255eb183ae78b1bed11d9ba9eb87a5cb02b4cf163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>20E</topic><topic>Bombyx mori</topic><topic>Chitin</topic><topic>chlorantraniliprole</topic><topic>Defects</topic><topic>Environmental effects</topic><topic>Epidermis</topic><topic>Exposure</topic><topic>Forestry</topic><topic>Ftz‐f1</topic><topic>Genes</topic><topic>Injection</topic><topic>Insecticides</topic><topic>Insects</topic><topic>Larvae</topic><topic>Metamorphosis</topic><topic>metamorphosis defects</topic><topic>mRNA</topic><topic>Pest control</topic><topic>Pests</topic><topic>Phenotypes</topic><topic>Pupae</topic><topic>Pupation</topic><topic>Signal transduction</topic><topic>Silkworms</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Lu, Zhengting</creatorcontrib><creatorcontrib>Li, Mengxue</creatorcontrib><creatorcontrib>Mao, Tingting</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Li, Fanchi</creatorcontrib><creatorcontrib>Sun, Haina</creatorcontrib><creatorcontrib>Dai, Minli</creatorcontrib><creatorcontrib>Ye, Wentao</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Pest management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jian</au><au>Lu, Zhengting</au><au>Li, Mengxue</au><au>Mao, Tingting</au><au>Wang, Hui</au><au>Li, Fanchi</au><au>Sun, Haina</au><au>Dai, Minli</au><au>Ye, Wentao</au><au>Li, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mechanism of sublethal chlorantraniliprole exposure causing silkworm pupation metamorphosis defects</atitle><jtitle>Pest management science</jtitle><addtitle>Pest Manag Sci</addtitle><date>2020-08</date><risdate>2020</risdate><volume>76</volume><issue>8</issue><spage>2838</spage><epage>2845</epage><pages>2838-2845</pages><issn>1526-498X</issn><eissn>1526-4998</eissn><abstract>BACKGROUND Chlorantraniliprole (CAP) is widely used in agriculture and forestry to prevent and control pests. The effects of environmental CAP residue on non‐target insect metamorphosis have not been reported. Our research aimed to investigate the sublethal effect of CAP on larva–pupa transformation in silkworm, and explore the mechanism of sublethal CAP exposure‐mediated pupation metamorphosis defects. RESULT Sublethal CAP exposure affected the growth and development of silkworm larvae and caused defects in pupation metamorphosis. After CAP exposure, formation the of prepupa procuticle, ecdysial membrane and new epidermis was inhibited. Also, the level of 20‐hydroxyecdysone (20E) and mRNA levels of the 20E signaling pathway‐related genes EcR, USP, E74, E75 and Ftz‐f1 were significantly reduced. Moreover, genes involved in chitin synthesis, such as ChsA, CDA1 and CDA2, were downregulated. Injection of 20E led to the upregulation of chitin synthesis‐related genes and increased formation of new epidermis in CAP‐treated silkworm. However, injection of 20E failed to prevent downregulation of Ftz‐f1 and the defects in pupation metamorphosis. CONCLUSION Our results suggested that 20E is a target hormone of CAP exposure‐mediated epidermis formation phenotype. Ftz‐f1 was silenced by CAP and might be a direct target gene of sublethal CAP exposure. Our study provided new evidence of the effects of sublethal CAP exposure on insect development and metamorphosis. © 2020 Society of Chemical Industry Sublethal chlorantraniliprole (CAP) exposure causes pupation metamorphosis defects in silkworm. Our study suggests that CAP acts on the 20‐hydroxyecdysone (20E) signaling pathway and Ftz‐f1 is the target of CAP‐induced pupation failure. © 2020 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>32237032</pmid><doi>10.1002/ps.5836</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3331-5266</orcidid><orcidid>https://orcid.org/0000-0002-8647-7533</orcidid><orcidid>https://orcid.org/0000-0002-2072-2444</orcidid><orcidid>https://orcid.org/0000-0003-3818-9817</orcidid><orcidid>https://orcid.org/0000-0003-1315-4706</orcidid><orcidid>https://orcid.org/0000-0001-6504-2728</orcidid><orcidid>https://orcid.org/0000-0002-7640-9019</orcidid><orcidid>https://orcid.org/0000-0002-5380-8359</orcidid><orcidid>https://orcid.org/0000-0002-6554-2551</orcidid><orcidid>https://orcid.org/0000-0002-1843-8081</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1526-498X
ispartof Pest management science, 2020-08, Vol.76 (8), p.2838-2845
issn 1526-498X
1526-4998
language eng
recordid cdi_proquest_miscellaneous_2385709343
source Access via Wiley Online Library
subjects 20E
Bombyx mori
Chitin
chlorantraniliprole
Defects
Environmental effects
Epidermis
Exposure
Forestry
Ftz‐f1
Genes
Injection
Insecticides
Insects
Larvae
Metamorphosis
metamorphosis defects
mRNA
Pest control
Pests
Phenotypes
Pupae
Pupation
Signal transduction
Silkworms
Synthesis
title The mechanism of sublethal chlorantraniliprole exposure causing silkworm pupation metamorphosis defects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mechanism%20of%20sublethal%20chlorantraniliprole%20exposure%20causing%20silkworm%20pupation%20metamorphosis%20defects&rft.jtitle=Pest%20management%20science&rft.au=Chen,%20Jian&rft.date=2020-08&rft.volume=76&rft.issue=8&rft.spage=2838&rft.epage=2845&rft.pages=2838-2845&rft.issn=1526-498X&rft.eissn=1526-4998&rft_id=info:doi/10.1002/ps.5836&rft_dat=%3Cproquest_cross%3E2385709343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421403658&rft_id=info:pmid/32237032&rfr_iscdi=true