Pulmonary nodule detection using hybrid two‐stage 3D CNNs

Purpose Early detection of pulmonary nodules is an effective way to improve patients’ chances of survival. In this work, we propose a novel and efficient way to build a computer‐aided detection (CAD) system for pulmonary nodules based on computed tomography (CT) scans. Methods The system can be roug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2020-08, Vol.47 (8), p.3376-3388
Hauptverfasser: Tan, Man, Wu, Fa, Yang, Bei, Ma, Jinlian, Kong, Dexing, Chen, Zengsi, Long, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3388
container_issue 8
container_start_page 3376
container_title Medical physics (Lancaster)
container_volume 47
creator Tan, Man
Wu, Fa
Yang, Bei
Ma, Jinlian
Kong, Dexing
Chen, Zengsi
Long, Dan
description Purpose Early detection of pulmonary nodules is an effective way to improve patients’ chances of survival. In this work, we propose a novel and efficient way to build a computer‐aided detection (CAD) system for pulmonary nodules based on computed tomography (CT) scans. Methods The system can be roughly divided into two steps: nodule candidate detection and false positive reduction. Considering the three‐dimensional (3D) nature of nodules, the CAD system adopts 3D convolutional neural networks (CNNs) in both stages. Specifically, in the first stage, a segmentation‐based 3D CNN with a hybrid loss is designed to segment nodules. According to the probability maps produced by the segmentation network, a threshold method and connected component analysis are applied to generate nodule candidates. In the second stage, we employ three classification‐based 3D CNNs with different types of inputs to reduce false positives. In addition to simple raw data input, we also introduce hybrid inputs to make better use of the output of the previous segmentation network. In experiments, we use data augmentation and batch normalization to avoid overfitting. Results We evaluate the system on 888 CT scans from the publicly available LIDC‐IDRI dataset, and our method achieves the best performance by comparing with the state‐of‐the‐art methods, which has a high detection sensitivity of 97.5% with an average of only one false positive per scan. An additional evaluation on 115 CT scans from local hospitals is also performed. Conclusions Experimental results demonstrate that our method is highly suited for the detection of pulmonary nodules.
doi_str_mv 10.1002/mp.14161
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2385709221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385709221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3211-3c734a8597c038641fee700fbac4956bdbc3229650ebf2acd5936ef09076ba253</originalsourceid><addsrcrecordid>eNp10D1Ow0AQhuEVApEQkDgBcknjMPtnZ0WFwq8UQgqoV-v1OBjZXuO1FaXjCJyRk2BIgIpqmkevNB8hxxTGFICdlfWYChrRHTJkIuahYKB2yRBAiZAJkANy4P0LAERcwj4ZcMa4kowOyfmiK0pXmWYdVC7tCgxSbNG2uauCzufVMnheJ02eBu3Kfby9-9YsMeCXwXQ-94dkLzOFx6PtHZGn66vH6W04e7i5m17MQssZpSG3MRdmIlVsgU8iQTPEGCBLjBVKRkma9I6pSAImGTM2lYpHmIGCOEoMk3xETjfdunGvHfpWl7m3WBSmQtd5zfhExqAYo3_UNs77BjNdN3nZf6cp6K-pdFnr76l6erKtdkmJ6S_82aYH4Qas8gLX_4b0_WIT_ARCjnDf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385709221</pqid></control><display><type>article</type><title>Pulmonary nodule detection using hybrid two‐stage 3D CNNs</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Tan, Man ; Wu, Fa ; Yang, Bei ; Ma, Jinlian ; Kong, Dexing ; Chen, Zengsi ; Long, Dan</creator><creatorcontrib>Tan, Man ; Wu, Fa ; Yang, Bei ; Ma, Jinlian ; Kong, Dexing ; Chen, Zengsi ; Long, Dan</creatorcontrib><description>Purpose Early detection of pulmonary nodules is an effective way to improve patients’ chances of survival. In this work, we propose a novel and efficient way to build a computer‐aided detection (CAD) system for pulmonary nodules based on computed tomography (CT) scans. Methods The system can be roughly divided into two steps: nodule candidate detection and false positive reduction. Considering the three‐dimensional (3D) nature of nodules, the CAD system adopts 3D convolutional neural networks (CNNs) in both stages. Specifically, in the first stage, a segmentation‐based 3D CNN with a hybrid loss is designed to segment nodules. According to the probability maps produced by the segmentation network, a threshold method and connected component analysis are applied to generate nodule candidates. In the second stage, we employ three classification‐based 3D CNNs with different types of inputs to reduce false positives. In addition to simple raw data input, we also introduce hybrid inputs to make better use of the output of the previous segmentation network. In experiments, we use data augmentation and batch normalization to avoid overfitting. Results We evaluate the system on 888 CT scans from the publicly available LIDC‐IDRI dataset, and our method achieves the best performance by comparing with the state‐of‐the‐art methods, which has a high detection sensitivity of 97.5% with an average of only one false positive per scan. An additional evaluation on 115 CT scans from local hospitals is also performed. Conclusions Experimental results demonstrate that our method is highly suited for the detection of pulmonary nodules.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1002/mp.14161</identifier><identifier>PMID: 32239521</identifier><language>eng</language><publisher>United States</publisher><subject>CAD system ; classification‐based 3D CNN ; Computer Systems ; Humans ; hybrid input ; hybrid loss ; Lung Neoplasms - diagnostic imaging ; Multiple Pulmonary Nodules - diagnostic imaging ; Neural Networks, Computer ; pulmonary nodule detection ; Radiographic Image Interpretation, Computer-Assisted ; segmentation‐based 3D CNN ; Tomography, X-Ray Computed</subject><ispartof>Medical physics (Lancaster), 2020-08, Vol.47 (8), p.3376-3388</ispartof><rights>2020 American Association of Physicists in Medicine</rights><rights>2020 American Association of Physicists in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3211-3c734a8597c038641fee700fbac4956bdbc3229650ebf2acd5936ef09076ba253</citedby><cites>FETCH-LOGICAL-c3211-3c734a8597c038641fee700fbac4956bdbc3229650ebf2acd5936ef09076ba253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmp.14161$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmp.14161$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32239521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Man</creatorcontrib><creatorcontrib>Wu, Fa</creatorcontrib><creatorcontrib>Yang, Bei</creatorcontrib><creatorcontrib>Ma, Jinlian</creatorcontrib><creatorcontrib>Kong, Dexing</creatorcontrib><creatorcontrib>Chen, Zengsi</creatorcontrib><creatorcontrib>Long, Dan</creatorcontrib><title>Pulmonary nodule detection using hybrid two‐stage 3D CNNs</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose Early detection of pulmonary nodules is an effective way to improve patients’ chances of survival. In this work, we propose a novel and efficient way to build a computer‐aided detection (CAD) system for pulmonary nodules based on computed tomography (CT) scans. Methods The system can be roughly divided into two steps: nodule candidate detection and false positive reduction. Considering the three‐dimensional (3D) nature of nodules, the CAD system adopts 3D convolutional neural networks (CNNs) in both stages. Specifically, in the first stage, a segmentation‐based 3D CNN with a hybrid loss is designed to segment nodules. According to the probability maps produced by the segmentation network, a threshold method and connected component analysis are applied to generate nodule candidates. In the second stage, we employ three classification‐based 3D CNNs with different types of inputs to reduce false positives. In addition to simple raw data input, we also introduce hybrid inputs to make better use of the output of the previous segmentation network. In experiments, we use data augmentation and batch normalization to avoid overfitting. Results We evaluate the system on 888 CT scans from the publicly available LIDC‐IDRI dataset, and our method achieves the best performance by comparing with the state‐of‐the‐art methods, which has a high detection sensitivity of 97.5% with an average of only one false positive per scan. An additional evaluation on 115 CT scans from local hospitals is also performed. Conclusions Experimental results demonstrate that our method is highly suited for the detection of pulmonary nodules.</description><subject>CAD system</subject><subject>classification‐based 3D CNN</subject><subject>Computer Systems</subject><subject>Humans</subject><subject>hybrid input</subject><subject>hybrid loss</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>Multiple Pulmonary Nodules - diagnostic imaging</subject><subject>Neural Networks, Computer</subject><subject>pulmonary nodule detection</subject><subject>Radiographic Image Interpretation, Computer-Assisted</subject><subject>segmentation‐based 3D CNN</subject><subject>Tomography, X-Ray Computed</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10D1Ow0AQhuEVApEQkDgBcknjMPtnZ0WFwq8UQgqoV-v1OBjZXuO1FaXjCJyRk2BIgIpqmkevNB8hxxTGFICdlfWYChrRHTJkIuahYKB2yRBAiZAJkANy4P0LAERcwj4ZcMa4kowOyfmiK0pXmWYdVC7tCgxSbNG2uauCzufVMnheJ02eBu3Kfby9-9YsMeCXwXQ-94dkLzOFx6PtHZGn66vH6W04e7i5m17MQssZpSG3MRdmIlVsgU8iQTPEGCBLjBVKRkma9I6pSAImGTM2lYpHmIGCOEoMk3xETjfdunGvHfpWl7m3WBSmQtd5zfhExqAYo3_UNs77BjNdN3nZf6cp6K-pdFnr76l6erKtdkmJ6S_82aYH4Qas8gLX_4b0_WIT_ARCjnDf</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Tan, Man</creator><creator>Wu, Fa</creator><creator>Yang, Bei</creator><creator>Ma, Jinlian</creator><creator>Kong, Dexing</creator><creator>Chen, Zengsi</creator><creator>Long, Dan</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202008</creationdate><title>Pulmonary nodule detection using hybrid two‐stage 3D CNNs</title><author>Tan, Man ; Wu, Fa ; Yang, Bei ; Ma, Jinlian ; Kong, Dexing ; Chen, Zengsi ; Long, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3211-3c734a8597c038641fee700fbac4956bdbc3229650ebf2acd5936ef09076ba253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CAD system</topic><topic>classification‐based 3D CNN</topic><topic>Computer Systems</topic><topic>Humans</topic><topic>hybrid input</topic><topic>hybrid loss</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>Multiple Pulmonary Nodules - diagnostic imaging</topic><topic>Neural Networks, Computer</topic><topic>pulmonary nodule detection</topic><topic>Radiographic Image Interpretation, Computer-Assisted</topic><topic>segmentation‐based 3D CNN</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Man</creatorcontrib><creatorcontrib>Wu, Fa</creatorcontrib><creatorcontrib>Yang, Bei</creatorcontrib><creatorcontrib>Ma, Jinlian</creatorcontrib><creatorcontrib>Kong, Dexing</creatorcontrib><creatorcontrib>Chen, Zengsi</creatorcontrib><creatorcontrib>Long, Dan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Man</au><au>Wu, Fa</au><au>Yang, Bei</au><au>Ma, Jinlian</au><au>Kong, Dexing</au><au>Chen, Zengsi</au><au>Long, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulmonary nodule detection using hybrid two‐stage 3D CNNs</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2020-08</date><risdate>2020</risdate><volume>47</volume><issue>8</issue><spage>3376</spage><epage>3388</epage><pages>3376-3388</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>Purpose Early detection of pulmonary nodules is an effective way to improve patients’ chances of survival. In this work, we propose a novel and efficient way to build a computer‐aided detection (CAD) system for pulmonary nodules based on computed tomography (CT) scans. Methods The system can be roughly divided into two steps: nodule candidate detection and false positive reduction. Considering the three‐dimensional (3D) nature of nodules, the CAD system adopts 3D convolutional neural networks (CNNs) in both stages. Specifically, in the first stage, a segmentation‐based 3D CNN with a hybrid loss is designed to segment nodules. According to the probability maps produced by the segmentation network, a threshold method and connected component analysis are applied to generate nodule candidates. In the second stage, we employ three classification‐based 3D CNNs with different types of inputs to reduce false positives. In addition to simple raw data input, we also introduce hybrid inputs to make better use of the output of the previous segmentation network. In experiments, we use data augmentation and batch normalization to avoid overfitting. Results We evaluate the system on 888 CT scans from the publicly available LIDC‐IDRI dataset, and our method achieves the best performance by comparing with the state‐of‐the‐art methods, which has a high detection sensitivity of 97.5% with an average of only one false positive per scan. An additional evaluation on 115 CT scans from local hospitals is also performed. Conclusions Experimental results demonstrate that our method is highly suited for the detection of pulmonary nodules.</abstract><cop>United States</cop><pmid>32239521</pmid><doi>10.1002/mp.14161</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2020-08, Vol.47 (8), p.3376-3388
issn 0094-2405
2473-4209
language eng
recordid cdi_proquest_miscellaneous_2385709221
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects CAD system
classification‐based 3D CNN
Computer Systems
Humans
hybrid input
hybrid loss
Lung Neoplasms - diagnostic imaging
Multiple Pulmonary Nodules - diagnostic imaging
Neural Networks, Computer
pulmonary nodule detection
Radiographic Image Interpretation, Computer-Assisted
segmentation‐based 3D CNN
Tomography, X-Ray Computed
title Pulmonary nodule detection using hybrid two‐stage 3D CNNs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulmonary%20nodule%20detection%20using%20hybrid%20two%E2%80%90stage%203D%20CNNs&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Tan,%20Man&rft.date=2020-08&rft.volume=47&rft.issue=8&rft.spage=3376&rft.epage=3388&rft.pages=3376-3388&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1002/mp.14161&rft_dat=%3Cproquest_cross%3E2385709221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2385709221&rft_id=info:pmid/32239521&rfr_iscdi=true