Cryo-EM structures of the ATP release channel pannexin 1

The plasma membrane adenosine triphosphate (ATP) release channel pannexin 1 (PANX1) has been implicated in many physiological and pathophysiological processes associated with purinergic signaling, including cancer progression, apoptotic cell clearance, inflammation, blood pressure regulation, oocyte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2020-04, Vol.27 (4), p.373-381
Hauptverfasser: Deng, Zengqin, He, Zhihui, Maksaev, Grigory, Bitter, Ryan M., Rau, Michael, Fitzpatrick, James A. J., Yuan, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 381
container_issue 4
container_start_page 373
container_title Nature structural & molecular biology
container_volume 27
creator Deng, Zengqin
He, Zhihui
Maksaev, Grigory
Bitter, Ryan M.
Rau, Michael
Fitzpatrick, James A. J.
Yuan, Peng
description The plasma membrane adenosine triphosphate (ATP) release channel pannexin 1 (PANX1) has been implicated in many physiological and pathophysiological processes associated with purinergic signaling, including cancer progression, apoptotic cell clearance, inflammation, blood pressure regulation, oocyte development, epilepsy and neuropathic pain. Here we present near-atomic-resolution structures of human and frog PANX1 determined by cryo-electron microscopy that revealed a heptameric channel architecture. Compatible with ATP permeation, the transmembrane pore and cytoplasmic vestibule were exceptionally wide. An extracellular tryptophan ring located at the outer pore created a constriction site, potentially functioning as a molecular sieve that restricts the size of permeable substrates. The amino and carboxyl termini, not resolved in the density map, appeared to be structurally dynamic and might contribute to narrowing of the pore during channel gating. In combination with functional characterization, this work elucidates the previously unknown architecture of pannexin channels and establishes a foundation for understanding their unique channel properties. Cryo-EM structures of plasma membrane ATP release channel pannexin 1 reveal heptameric architecture, wide pore and a constriction potentially restricting the size of permeable substrates. Combined with functional assays, they offer insights into channel gating.
doi_str_mv 10.1038/s41594-020-0401-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2385279110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387997197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-8c7d3de74d6200389e9a197aea4c66c74b103ba7a8054a582ff67928d93508513</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotlZ_gBdZ8OIlms8mOZZSP6Cih3oOaXbWtmx3a7IL9t-bZauC4GkG5sk7kwehS0puKeH6LgoqjcCEEUwEoZgcoSGVQmJjtDz-6Q0foLMYN4QwKRU_RQPOGKdMmyHS07Cv8ew5i01ofdMGiFldZM0KssniNQtQgouQ-ZWrKiizXVc-11VGz9FJ4coIF4c6Qm_3s8X0Ec9fHp6mkzn2QtMGa69ynoMS-ZiRdLMB46hRDpzw47FXYpl-snTKaSKFk5oVxVgZpnPDJdGS8hG66XN3of5oITZ2u44eytJVULfRMq4lU4ammBG6_oNu6jZU6bqOUsaotDlRtKd8qGMMUNhdWG9d2FtKbKfV9lpt0mo7rbZLvjokt8st5D8vvj0mgPVATKPqHcLv6v9TvwCf8n7j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387997197</pqid></control><display><type>article</type><title>Cryo-EM structures of the ATP release channel pannexin 1</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Deng, Zengqin ; He, Zhihui ; Maksaev, Grigory ; Bitter, Ryan M. ; Rau, Michael ; Fitzpatrick, James A. J. ; Yuan, Peng</creator><creatorcontrib>Deng, Zengqin ; He, Zhihui ; Maksaev, Grigory ; Bitter, Ryan M. ; Rau, Michael ; Fitzpatrick, James A. J. ; Yuan, Peng</creatorcontrib><description>The plasma membrane adenosine triphosphate (ATP) release channel pannexin 1 (PANX1) has been implicated in many physiological and pathophysiological processes associated with purinergic signaling, including cancer progression, apoptotic cell clearance, inflammation, blood pressure regulation, oocyte development, epilepsy and neuropathic pain. Here we present near-atomic-resolution structures of human and frog PANX1 determined by cryo-electron microscopy that revealed a heptameric channel architecture. Compatible with ATP permeation, the transmembrane pore and cytoplasmic vestibule were exceptionally wide. An extracellular tryptophan ring located at the outer pore created a constriction site, potentially functioning as a molecular sieve that restricts the size of permeable substrates. The amino and carboxyl termini, not resolved in the density map, appeared to be structurally dynamic and might contribute to narrowing of the pore during channel gating. In combination with functional characterization, this work elucidates the previously unknown architecture of pannexin channels and establishes a foundation for understanding their unique channel properties. Cryo-EM structures of plasma membrane ATP release channel pannexin 1 reveal heptameric architecture, wide pore and a constriction potentially restricting the size of permeable substrates. Combined with functional assays, they offer insights into channel gating.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-020-0401-0</identifier><identifier>PMID: 32231289</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/2204/1453 ; 631/45/612/1237 ; 631/535/1258/1259 ; 631/57/2270/1140 ; Adenosine triphosphate ; Adenosine Triphosphate - chemistry ; Adenosine Triphosphate - genetics ; Animals ; Anura - genetics ; Apoptosis ; Architecture ; ATP ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Blood pressure ; Cell Membrane - chemistry ; Cell Membrane - genetics ; Cell Membrane - ultrastructure ; Channel gating ; Connexins - chemistry ; Connexins - genetics ; Connexins - ultrastructure ; Constrictions ; Cryoelectron Microscopy ; Electron microscopy ; Epilepsy ; Gametocytes ; Humans ; Life Sciences ; Membrane Biology ; Membranes ; Molecular sieves ; Nerve Tissue Proteins - chemistry ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - ultrastructure ; Neuralgia ; Permeability ; Protein Conformation ; Protein Structure ; Signal Transduction - genetics ; Substrates ; Tryptophan ; Vestibules</subject><ispartof>Nature structural &amp; molecular biology, 2020-04, Vol.27 (4), p.373-381</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-8c7d3de74d6200389e9a197aea4c66c74b103ba7a8054a582ff67928d93508513</citedby><cites>FETCH-LOGICAL-c481t-8c7d3de74d6200389e9a197aea4c66c74b103ba7a8054a582ff67928d93508513</cites><orcidid>0000-0002-5660-225X ; 0000-0003-4184-8377 ; 0000-0001-6242-1634 ; 0000-0002-5658-2068 ; 0000-0002-7907-3602 ; 0000-0001-5170-2000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-020-0401-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-020-0401-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32231289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Zengqin</creatorcontrib><creatorcontrib>He, Zhihui</creatorcontrib><creatorcontrib>Maksaev, Grigory</creatorcontrib><creatorcontrib>Bitter, Ryan M.</creatorcontrib><creatorcontrib>Rau, Michael</creatorcontrib><creatorcontrib>Fitzpatrick, James A. J.</creatorcontrib><creatorcontrib>Yuan, Peng</creatorcontrib><title>Cryo-EM structures of the ATP release channel pannexin 1</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>The plasma membrane adenosine triphosphate (ATP) release channel pannexin 1 (PANX1) has been implicated in many physiological and pathophysiological processes associated with purinergic signaling, including cancer progression, apoptotic cell clearance, inflammation, blood pressure regulation, oocyte development, epilepsy and neuropathic pain. Here we present near-atomic-resolution structures of human and frog PANX1 determined by cryo-electron microscopy that revealed a heptameric channel architecture. Compatible with ATP permeation, the transmembrane pore and cytoplasmic vestibule were exceptionally wide. An extracellular tryptophan ring located at the outer pore created a constriction site, potentially functioning as a molecular sieve that restricts the size of permeable substrates. The amino and carboxyl termini, not resolved in the density map, appeared to be structurally dynamic and might contribute to narrowing of the pore during channel gating. In combination with functional characterization, this work elucidates the previously unknown architecture of pannexin channels and establishes a foundation for understanding their unique channel properties. Cryo-EM structures of plasma membrane ATP release channel pannexin 1 reveal heptameric architecture, wide pore and a constriction potentially restricting the size of permeable substrates. Combined with functional assays, they offer insights into channel gating.</description><subject>631/1647/2204/1453</subject><subject>631/45/612/1237</subject><subject>631/535/1258/1259</subject><subject>631/57/2270/1140</subject><subject>Adenosine triphosphate</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Adenosine Triphosphate - genetics</subject><subject>Animals</subject><subject>Anura - genetics</subject><subject>Apoptosis</subject><subject>Architecture</subject><subject>ATP</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Blood pressure</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - genetics</subject><subject>Cell Membrane - ultrastructure</subject><subject>Channel gating</subject><subject>Connexins - chemistry</subject><subject>Connexins - genetics</subject><subject>Connexins - ultrastructure</subject><subject>Constrictions</subject><subject>Cryoelectron Microscopy</subject><subject>Electron microscopy</subject><subject>Epilepsy</subject><subject>Gametocytes</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Membranes</subject><subject>Molecular sieves</subject><subject>Nerve Tissue Proteins - chemistry</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - ultrastructure</subject><subject>Neuralgia</subject><subject>Permeability</subject><subject>Protein Conformation</subject><subject>Protein Structure</subject><subject>Signal Transduction - genetics</subject><subject>Substrates</subject><subject>Tryptophan</subject><subject>Vestibules</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LAzEQhoMotlZ_gBdZ8OIlms8mOZZSP6Cih3oOaXbWtmx3a7IL9t-bZauC4GkG5sk7kwehS0puKeH6LgoqjcCEEUwEoZgcoSGVQmJjtDz-6Q0foLMYN4QwKRU_RQPOGKdMmyHS07Cv8ew5i01ofdMGiFldZM0KssniNQtQgouQ-ZWrKiizXVc-11VGz9FJ4coIF4c6Qm_3s8X0Ec9fHp6mkzn2QtMGa69ynoMS-ZiRdLMB46hRDpzw47FXYpl-snTKaSKFk5oVxVgZpnPDJdGS8hG66XN3of5oITZ2u44eytJVULfRMq4lU4ammBG6_oNu6jZU6bqOUsaotDlRtKd8qGMMUNhdWG9d2FtKbKfV9lpt0mo7rbZLvjokt8st5D8vvj0mgPVATKPqHcLv6v9TvwCf8n7j</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Deng, Zengqin</creator><creator>He, Zhihui</creator><creator>Maksaev, Grigory</creator><creator>Bitter, Ryan M.</creator><creator>Rau, Michael</creator><creator>Fitzpatrick, James A. J.</creator><creator>Yuan, Peng</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5660-225X</orcidid><orcidid>https://orcid.org/0000-0003-4184-8377</orcidid><orcidid>https://orcid.org/0000-0001-6242-1634</orcidid><orcidid>https://orcid.org/0000-0002-5658-2068</orcidid><orcidid>https://orcid.org/0000-0002-7907-3602</orcidid><orcidid>https://orcid.org/0000-0001-5170-2000</orcidid></search><sort><creationdate>20200401</creationdate><title>Cryo-EM structures of the ATP release channel pannexin 1</title><author>Deng, Zengqin ; He, Zhihui ; Maksaev, Grigory ; Bitter, Ryan M. ; Rau, Michael ; Fitzpatrick, James A. J. ; Yuan, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-8c7d3de74d6200389e9a197aea4c66c74b103ba7a8054a582ff67928d93508513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/1647/2204/1453</topic><topic>631/45/612/1237</topic><topic>631/535/1258/1259</topic><topic>631/57/2270/1140</topic><topic>Adenosine triphosphate</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Adenosine Triphosphate - genetics</topic><topic>Animals</topic><topic>Anura - genetics</topic><topic>Apoptosis</topic><topic>Architecture</topic><topic>ATP</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Blood pressure</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - genetics</topic><topic>Cell Membrane - ultrastructure</topic><topic>Channel gating</topic><topic>Connexins - chemistry</topic><topic>Connexins - genetics</topic><topic>Connexins - ultrastructure</topic><topic>Constrictions</topic><topic>Cryoelectron Microscopy</topic><topic>Electron microscopy</topic><topic>Epilepsy</topic><topic>Gametocytes</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Membranes</topic><topic>Molecular sieves</topic><topic>Nerve Tissue Proteins - chemistry</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - ultrastructure</topic><topic>Neuralgia</topic><topic>Permeability</topic><topic>Protein Conformation</topic><topic>Protein Structure</topic><topic>Signal Transduction - genetics</topic><topic>Substrates</topic><topic>Tryptophan</topic><topic>Vestibules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Zengqin</creatorcontrib><creatorcontrib>He, Zhihui</creatorcontrib><creatorcontrib>Maksaev, Grigory</creatorcontrib><creatorcontrib>Bitter, Ryan M.</creatorcontrib><creatorcontrib>Rau, Michael</creatorcontrib><creatorcontrib>Fitzpatrick, James A. J.</creatorcontrib><creatorcontrib>Yuan, Peng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Zengqin</au><au>He, Zhihui</au><au>Maksaev, Grigory</au><au>Bitter, Ryan M.</au><au>Rau, Michael</au><au>Fitzpatrick, James A. J.</au><au>Yuan, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryo-EM structures of the ATP release channel pannexin 1</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>27</volume><issue>4</issue><spage>373</spage><epage>381</epage><pages>373-381</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>The plasma membrane adenosine triphosphate (ATP) release channel pannexin 1 (PANX1) has been implicated in many physiological and pathophysiological processes associated with purinergic signaling, including cancer progression, apoptotic cell clearance, inflammation, blood pressure regulation, oocyte development, epilepsy and neuropathic pain. Here we present near-atomic-resolution structures of human and frog PANX1 determined by cryo-electron microscopy that revealed a heptameric channel architecture. Compatible with ATP permeation, the transmembrane pore and cytoplasmic vestibule were exceptionally wide. An extracellular tryptophan ring located at the outer pore created a constriction site, potentially functioning as a molecular sieve that restricts the size of permeable substrates. The amino and carboxyl termini, not resolved in the density map, appeared to be structurally dynamic and might contribute to narrowing of the pore during channel gating. In combination with functional characterization, this work elucidates the previously unknown architecture of pannexin channels and establishes a foundation for understanding their unique channel properties. Cryo-EM structures of plasma membrane ATP release channel pannexin 1 reveal heptameric architecture, wide pore and a constriction potentially restricting the size of permeable substrates. Combined with functional assays, they offer insights into channel gating.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32231289</pmid><doi>10.1038/s41594-020-0401-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5660-225X</orcidid><orcidid>https://orcid.org/0000-0003-4184-8377</orcidid><orcidid>https://orcid.org/0000-0001-6242-1634</orcidid><orcidid>https://orcid.org/0000-0002-5658-2068</orcidid><orcidid>https://orcid.org/0000-0002-7907-3602</orcidid><orcidid>https://orcid.org/0000-0001-5170-2000</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2020-04, Vol.27 (4), p.373-381
issn 1545-9993
1545-9985
language eng
recordid cdi_proquest_miscellaneous_2385279110
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 631/1647/2204/1453
631/45/612/1237
631/535/1258/1259
631/57/2270/1140
Adenosine triphosphate
Adenosine Triphosphate - chemistry
Adenosine Triphosphate - genetics
Animals
Anura - genetics
Apoptosis
Architecture
ATP
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Blood pressure
Cell Membrane - chemistry
Cell Membrane - genetics
Cell Membrane - ultrastructure
Channel gating
Connexins - chemistry
Connexins - genetics
Connexins - ultrastructure
Constrictions
Cryoelectron Microscopy
Electron microscopy
Epilepsy
Gametocytes
Humans
Life Sciences
Membrane Biology
Membranes
Molecular sieves
Nerve Tissue Proteins - chemistry
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - ultrastructure
Neuralgia
Permeability
Protein Conformation
Protein Structure
Signal Transduction - genetics
Substrates
Tryptophan
Vestibules
title Cryo-EM structures of the ATP release channel pannexin 1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryo-EM%20structures%20of%20the%20ATP%20release%20channel%20pannexin%201&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Deng,%20Zengqin&rft.date=2020-04-01&rft.volume=27&rft.issue=4&rft.spage=373&rft.epage=381&rft.pages=373-381&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-020-0401-0&rft_dat=%3Cproquest_cross%3E2387997197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387997197&rft_id=info:pmid/32231289&rfr_iscdi=true