Dissociable roles of ventral pallidum neurons in the basal ganglia reinforcement learning network

Reinforcement learning models treat the basal ganglia (BG) as an actor–critic network. The ventral pallidum (VP) is a major component of the BG limbic system. However, its precise functional roles within the BG circuitry, particularly in comparison to the adjacent external segment of the globus pall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2020-04, Vol.23 (4), p.556-564
Hauptverfasser: Kaplan, Alexander, Mizrahi-Kliger, Aviv D., Israel, Zvi, Adler, Avital, Bergman, Hagai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 564
container_issue 4
container_start_page 556
container_title Nature neuroscience
container_volume 23
creator Kaplan, Alexander
Mizrahi-Kliger, Aviv D.
Israel, Zvi
Adler, Avital
Bergman, Hagai
description Reinforcement learning models treat the basal ganglia (BG) as an actor–critic network. The ventral pallidum (VP) is a major component of the BG limbic system. However, its precise functional roles within the BG circuitry, particularly in comparison to the adjacent external segment of the globus pallidus (GPe), remain unexplored. We recorded the spiking activity of VP neurons, GPe cells (actor) and striatal cholinergic interneurons (critic) while monkeys performed a classical conditioning task. Here, we report that VP neurons can be classified into two distinct populations. The persistent population displayed sustained activation following visual cue presentation, was correlated with monkeys’ behavior and showed uncorrelated spiking activity. The transient population displayed phasic synchronized responses that were correlated with the rate of learning and the reinforcement learning model’s prediction error. Our results suggest that the VP is physiologically different from the GPe and identify the transient VP neurons as a BG critic. Kaplan et al. characterize the physiological properties of cells in the primate ventral pallidum. They employ a reinforcement learning model to demonstrate that the different neuronal populations play distinct roles in the basal ganglia network.
doi_str_mv 10.1038/s41593-020-0605-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2385279026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A619414652</galeid><sourcerecordid>A619414652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-b2f6729be95a0e6e3cf7de178ae70027a8bc50141af5cc1c71e846d8e53ede203</originalsourceid><addsrcrecordid>eNp1kktv1TAQhSNERUvhB7BBltjAIsWP-JFlVVqoVKlSgbXlOJPg4tgXOyncf4-jW1pdBPLCluc7RzP2qapXBJ8QzNT73BDeshpTXGOBeb19Uh0R3oiaSCqeljNuZS0oF4fV85xvMcaSq_ZZdcgoZYQxdVSZDy7naJ3pPKAUPWQUB3QHYU7Go43x3vXLhAIsKYaMXEDzN0CdyaU6mjB6Z1ACF4aYLExFhjyYFFwYi2b-GdP3F9XBYHyGl_f7cfX14vzL2af66vrj5dnpVW0byea6o4OQtO2g5QaDAGYH2QORyoDEmEqjOssxaYgZuLXESgKqEb0CzqAHitlx9Xbnu0nxxwJ51pPLFrw3AeKSNWWKU9liKgr65i_0Ni4plO5WSjDOuVKP1Gg86HXE8iZ2NdWngrQNaQSnhTr5B1VWD5OzMcDgyv2e4N2eoDAz_JpHs-SsLz_f7LNkx9oUc04w6E1yk0lbTbBeI6B3EdAlAnqNgN4Wzev74ZZugv5B8efPC0B3QC6lMEJ6nP7_rr8BFci68Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386355588</pqid></control><display><type>article</type><title>Dissociable roles of ventral pallidum neurons in the basal ganglia reinforcement learning network</title><source>MEDLINE</source><source>Single Title from Nature Journals</source><source>SpringerLink (Online service)</source><creator>Kaplan, Alexander ; Mizrahi-Kliger, Aviv D. ; Israel, Zvi ; Adler, Avital ; Bergman, Hagai</creator><creatorcontrib>Kaplan, Alexander ; Mizrahi-Kliger, Aviv D. ; Israel, Zvi ; Adler, Avital ; Bergman, Hagai</creatorcontrib><description>Reinforcement learning models treat the basal ganglia (BG) as an actor–critic network. The ventral pallidum (VP) is a major component of the BG limbic system. However, its precise functional roles within the BG circuitry, particularly in comparison to the adjacent external segment of the globus pallidus (GPe), remain unexplored. We recorded the spiking activity of VP neurons, GPe cells (actor) and striatal cholinergic interneurons (critic) while monkeys performed a classical conditioning task. Here, we report that VP neurons can be classified into two distinct populations. The persistent population displayed sustained activation following visual cue presentation, was correlated with monkeys’ behavior and showed uncorrelated spiking activity. The transient population displayed phasic synchronized responses that were correlated with the rate of learning and the reinforcement learning model’s prediction error. Our results suggest that the VP is physiologically different from the GPe and identify the transient VP neurons as a BG critic. Kaplan et al. characterize the physiological properties of cells in the primate ventral pallidum. They employ a reinforcement learning model to demonstrate that the different neuronal populations play distinct roles in the basal ganglia network.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-020-0605-y</identifier><identifier>PMID: 32231338</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378 ; 631/443 ; 9/30 ; Action Potentials - physiology ; Analysis ; Animal Genetics and Genomics ; Animals ; Basal Forebrain - physiology ; Basal ganglia ; Basal Ganglia - physiology ; Behavior ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Chlorocebus aethiops ; Cholinergics ; Circuits ; Classical conditioning ; Conditioning, Classical - physiology ; Female ; Firing pattern ; Ganglia ; Globus pallidus ; Interneurons ; Learning ; Limbic system ; Models, Neurological ; Monkeys ; Neostriatum ; Nerve Net - physiology ; Neural circuitry ; Neurobiology ; Neurons ; Neurons - physiology ; Neurosciences ; Physiological aspects ; Populations ; Psychological aspects ; Reinforcement, Psychology ; Spiking ; Visual stimuli</subject><ispartof>Nature neuroscience, 2020-04, Vol.23 (4), p.556-564</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-b2f6729be95a0e6e3cf7de178ae70027a8bc50141af5cc1c71e846d8e53ede203</citedby><cites>FETCH-LOGICAL-c473t-b2f6729be95a0e6e3cf7de178ae70027a8bc50141af5cc1c71e846d8e53ede203</cites><orcidid>0000-0002-4634-4322 ; 0000-0001-6492-8770 ; 0000-0002-2402-6673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41593-020-0605-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41593-020-0605-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32231338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaplan, Alexander</creatorcontrib><creatorcontrib>Mizrahi-Kliger, Aviv D.</creatorcontrib><creatorcontrib>Israel, Zvi</creatorcontrib><creatorcontrib>Adler, Avital</creatorcontrib><creatorcontrib>Bergman, Hagai</creatorcontrib><title>Dissociable roles of ventral pallidum neurons in the basal ganglia reinforcement learning network</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Reinforcement learning models treat the basal ganglia (BG) as an actor–critic network. The ventral pallidum (VP) is a major component of the BG limbic system. However, its precise functional roles within the BG circuitry, particularly in comparison to the adjacent external segment of the globus pallidus (GPe), remain unexplored. We recorded the spiking activity of VP neurons, GPe cells (actor) and striatal cholinergic interneurons (critic) while monkeys performed a classical conditioning task. Here, we report that VP neurons can be classified into two distinct populations. The persistent population displayed sustained activation following visual cue presentation, was correlated with monkeys’ behavior and showed uncorrelated spiking activity. The transient population displayed phasic synchronized responses that were correlated with the rate of learning and the reinforcement learning model’s prediction error. Our results suggest that the VP is physiologically different from the GPe and identify the transient VP neurons as a BG critic. Kaplan et al. characterize the physiological properties of cells in the primate ventral pallidum. They employ a reinforcement learning model to demonstrate that the different neuronal populations play distinct roles in the basal ganglia network.</description><subject>631/378</subject><subject>631/443</subject><subject>9/30</subject><subject>Action Potentials - physiology</subject><subject>Analysis</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Basal Forebrain - physiology</subject><subject>Basal ganglia</subject><subject>Basal Ganglia - physiology</subject><subject>Behavior</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Chlorocebus aethiops</subject><subject>Cholinergics</subject><subject>Circuits</subject><subject>Classical conditioning</subject><subject>Conditioning, Classical - physiology</subject><subject>Female</subject><subject>Firing pattern</subject><subject>Ganglia</subject><subject>Globus pallidus</subject><subject>Interneurons</subject><subject>Learning</subject><subject>Limbic system</subject><subject>Models, Neurological</subject><subject>Monkeys</subject><subject>Neostriatum</subject><subject>Nerve Net - physiology</subject><subject>Neural circuitry</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Physiological aspects</subject><subject>Populations</subject><subject>Psychological aspects</subject><subject>Reinforcement, Psychology</subject><subject>Spiking</subject><subject>Visual stimuli</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kktv1TAQhSNERUvhB7BBltjAIsWP-JFlVVqoVKlSgbXlOJPg4tgXOyncf4-jW1pdBPLCluc7RzP2qapXBJ8QzNT73BDeshpTXGOBeb19Uh0R3oiaSCqeljNuZS0oF4fV85xvMcaSq_ZZdcgoZYQxdVSZDy7naJ3pPKAUPWQUB3QHYU7Go43x3vXLhAIsKYaMXEDzN0CdyaU6mjB6Z1ACF4aYLExFhjyYFFwYi2b-GdP3F9XBYHyGl_f7cfX14vzL2af66vrj5dnpVW0byea6o4OQtO2g5QaDAGYH2QORyoDEmEqjOssxaYgZuLXESgKqEb0CzqAHitlx9Xbnu0nxxwJ51pPLFrw3AeKSNWWKU9liKgr65i_0Ni4plO5WSjDOuVKP1Gg86HXE8iZ2NdWngrQNaQSnhTr5B1VWD5OzMcDgyv2e4N2eoDAz_JpHs-SsLz_f7LNkx9oUc04w6E1yk0lbTbBeI6B3EdAlAnqNgN4Wzev74ZZugv5B8efPC0B3QC6lMEJ6nP7_rr8BFci68Q</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Kaplan, Alexander</creator><creator>Mizrahi-Kliger, Aviv D.</creator><creator>Israel, Zvi</creator><creator>Adler, Avital</creator><creator>Bergman, Hagai</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4634-4322</orcidid><orcidid>https://orcid.org/0000-0001-6492-8770</orcidid><orcidid>https://orcid.org/0000-0002-2402-6673</orcidid></search><sort><creationdate>20200401</creationdate><title>Dissociable roles of ventral pallidum neurons in the basal ganglia reinforcement learning network</title><author>Kaplan, Alexander ; Mizrahi-Kliger, Aviv D. ; Israel, Zvi ; Adler, Avital ; Bergman, Hagai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-b2f6729be95a0e6e3cf7de178ae70027a8bc50141af5cc1c71e846d8e53ede203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/378</topic><topic>631/443</topic><topic>9/30</topic><topic>Action Potentials - physiology</topic><topic>Analysis</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Basal Forebrain - physiology</topic><topic>Basal ganglia</topic><topic>Basal Ganglia - physiology</topic><topic>Behavior</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Chlorocebus aethiops</topic><topic>Cholinergics</topic><topic>Circuits</topic><topic>Classical conditioning</topic><topic>Conditioning, Classical - physiology</topic><topic>Female</topic><topic>Firing pattern</topic><topic>Ganglia</topic><topic>Globus pallidus</topic><topic>Interneurons</topic><topic>Learning</topic><topic>Limbic system</topic><topic>Models, Neurological</topic><topic>Monkeys</topic><topic>Neostriatum</topic><topic>Nerve Net - physiology</topic><topic>Neural circuitry</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Physiological aspects</topic><topic>Populations</topic><topic>Psychological aspects</topic><topic>Reinforcement, Psychology</topic><topic>Spiking</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaplan, Alexander</creatorcontrib><creatorcontrib>Mizrahi-Kliger, Aviv D.</creatorcontrib><creatorcontrib>Israel, Zvi</creatorcontrib><creatorcontrib>Adler, Avital</creatorcontrib><creatorcontrib>Bergman, Hagai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Science In Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaplan, Alexander</au><au>Mizrahi-Kliger, Aviv D.</au><au>Israel, Zvi</au><au>Adler, Avital</au><au>Bergman, Hagai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissociable roles of ventral pallidum neurons in the basal ganglia reinforcement learning network</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>23</volume><issue>4</issue><spage>556</spage><epage>564</epage><pages>556-564</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><abstract>Reinforcement learning models treat the basal ganglia (BG) as an actor–critic network. The ventral pallidum (VP) is a major component of the BG limbic system. However, its precise functional roles within the BG circuitry, particularly in comparison to the adjacent external segment of the globus pallidus (GPe), remain unexplored. We recorded the spiking activity of VP neurons, GPe cells (actor) and striatal cholinergic interneurons (critic) while monkeys performed a classical conditioning task. Here, we report that VP neurons can be classified into two distinct populations. The persistent population displayed sustained activation following visual cue presentation, was correlated with monkeys’ behavior and showed uncorrelated spiking activity. The transient population displayed phasic synchronized responses that were correlated with the rate of learning and the reinforcement learning model’s prediction error. Our results suggest that the VP is physiologically different from the GPe and identify the transient VP neurons as a BG critic. Kaplan et al. characterize the physiological properties of cells in the primate ventral pallidum. They employ a reinforcement learning model to demonstrate that the different neuronal populations play distinct roles in the basal ganglia network.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32231338</pmid><doi>10.1038/s41593-020-0605-y</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4634-4322</orcidid><orcidid>https://orcid.org/0000-0001-6492-8770</orcidid><orcidid>https://orcid.org/0000-0002-2402-6673</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2020-04, Vol.23 (4), p.556-564
issn 1097-6256
1546-1726
language eng
recordid cdi_proquest_miscellaneous_2385279026
source MEDLINE; Single Title from Nature Journals; SpringerLink (Online service)
subjects 631/378
631/443
9/30
Action Potentials - physiology
Analysis
Animal Genetics and Genomics
Animals
Basal Forebrain - physiology
Basal ganglia
Basal Ganglia - physiology
Behavior
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Chlorocebus aethiops
Cholinergics
Circuits
Classical conditioning
Conditioning, Classical - physiology
Female
Firing pattern
Ganglia
Globus pallidus
Interneurons
Learning
Limbic system
Models, Neurological
Monkeys
Neostriatum
Nerve Net - physiology
Neural circuitry
Neurobiology
Neurons
Neurons - physiology
Neurosciences
Physiological aspects
Populations
Psychological aspects
Reinforcement, Psychology
Spiking
Visual stimuli
title Dissociable roles of ventral pallidum neurons in the basal ganglia reinforcement learning network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissociable%20roles%20of%20ventral%20pallidum%20neurons%20in%20the%20basal%20ganglia%20reinforcement%20learning%20network&rft.jtitle=Nature%20neuroscience&rft.au=Kaplan,%20Alexander&rft.date=2020-04-01&rft.volume=23&rft.issue=4&rft.spage=556&rft.epage=564&rft.pages=556-564&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-020-0605-y&rft_dat=%3Cgale_proqu%3EA619414652%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386355588&rft_id=info:pmid/32231338&rft_galeid=A619414652&rfr_iscdi=true