A Force Field for Poly(oxymethylene) Dimethyl Ethers (OMEn)
A united atom force field for the homologous series of the poly(oxymethylene) dimethyl ethers (OMEn), H3C–O–(CH2O) n –CH3, is presented. OMEn are oxygenates and promising new synthetic fuels and solvents. The molecular geometry of the OMEn, the internal degrees of freedom, and their electrostatic p...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2020-04, Vol.16 (4), p.2517-2528 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2528 |
---|---|
container_issue | 4 |
container_start_page | 2517 |
container_title | Journal of chemical theory and computation |
container_volume | 16 |
creator | Kulkarni, Aditya García, Edder J Damone, Angelo Schappals, Michael Stephan, Simon Kohns, Maximilian Hasse, Hans |
description | A united atom force field for the homologous series of the poly(oxymethylene) dimethyl ethers (OMEn), H3C–O–(CH2O) n –CH3, is presented. OMEn are oxygenates and promising new synthetic fuels and solvents. The molecular geometry of the OMEn, the internal degrees of freedom, and their electrostatic properties were obtained from quantum mechanical calculations. To model repulsion and dispersion, Lennard-Jones parameters were fitted to the experimental liquid densities and vapor pressures of pure OMEn (n = 1–4). The critical properties of OMEn (n = 1–4) were determined from the simulation data. Additionally, the shear viscosity of pure liquid OMEn is evaluated and compared with literature data. Finally, the solubility of CO2 in OME2, OME3, and OME4 is predicted using a literature model for CO2 and the Lorentz–Berthelot combining rules. The results agree well with experimental data from the literature. |
doi_str_mv | 10.1021/acs.jctc.9b01106 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2385276077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385276077</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-48c94445849b66e5423cb1c9281e536735afde1a7d39c6bbb2e6ce61fcb9002a3</originalsourceid><addsrcrecordid>eNp1kEtLw0AURgdRbK3uXUnATQumziuTDK5KbVWo1IWuh8zkhqbkUWcSMP_e1LQuBFdzB8733ctB6JrgKcGU3MfGTbemNlOpMSFYnKAhCbj0paDi9Hcm0QBdOLfFmDFO2TkaMEppKBkbooeZt6ysAW-ZQZ54aWW9typvx9VXW0C9aXMoYeI9Zv3HW9QbsM4br18X5eQSnaVx7uDq8I7Qx3LxPn_2V-unl_ls5ccci9rnkZGc8yDiUgsBQXeC0cRIGhEImAhZEKcJkDhMmDRCa01BGBAkNVpiTGM2QuO-d2erzwZcrYrMGcjzuISqcYqyKKChwGHYobd_0G3V2LK7rqMkkSHmgnYU7iljK-cspGpnsyK2rSJY7cWqTqzai1UHsV3k5lDc6AKS38DRZAfc9cBP9Lj0375vOAqBKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391970462</pqid></control><display><type>article</type><title>A Force Field for Poly(oxymethylene) Dimethyl Ethers (OMEn)</title><source>ACS Publications</source><creator>Kulkarni, Aditya ; García, Edder J ; Damone, Angelo ; Schappals, Michael ; Stephan, Simon ; Kohns, Maximilian ; Hasse, Hans</creator><creatorcontrib>Kulkarni, Aditya ; García, Edder J ; Damone, Angelo ; Schappals, Michael ; Stephan, Simon ; Kohns, Maximilian ; Hasse, Hans</creatorcontrib><description>A united atom force field for the homologous series of the poly(oxymethylene) dimethyl ethers (OMEn), H3C–O–(CH2O) n –CH3, is presented. OMEn are oxygenates and promising new synthetic fuels and solvents. The molecular geometry of the OMEn, the internal degrees of freedom, and their electrostatic properties were obtained from quantum mechanical calculations. To model repulsion and dispersion, Lennard-Jones parameters were fitted to the experimental liquid densities and vapor pressures of pure OMEn (n = 1–4). The critical properties of OMEn (n = 1–4) were determined from the simulation data. Additionally, the shear viscosity of pure liquid OMEn is evaluated and compared with literature data. Finally, the solubility of CO2 in OME2, OME3, and OME4 is predicted using a literature model for CO2 and the Lorentz–Berthelot combining rules. The results agree well with experimental data from the literature.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.9b01106</identifier><identifier>PMID: 32227933</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Carbon dioxide ; Computer simulation ; Dimethyl ether ; Ethers ; Homology ; Quantum mechanics ; Shear viscosity ; Synthetic fuels</subject><ispartof>Journal of chemical theory and computation, 2020-04, Vol.16 (4), p.2517-2528</ispartof><rights>Copyright American Chemical Society Apr 14, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-48c94445849b66e5423cb1c9281e536735afde1a7d39c6bbb2e6ce61fcb9002a3</citedby><cites>FETCH-LOGICAL-a406t-48c94445849b66e5423cb1c9281e536735afde1a7d39c6bbb2e6ce61fcb9002a3</cites><orcidid>0000-0002-8131-2027 ; 0000-0001-9407-6644 ; 0000-0002-4578-3569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.9b01106$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.9b01106$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32227933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kulkarni, Aditya</creatorcontrib><creatorcontrib>García, Edder J</creatorcontrib><creatorcontrib>Damone, Angelo</creatorcontrib><creatorcontrib>Schappals, Michael</creatorcontrib><creatorcontrib>Stephan, Simon</creatorcontrib><creatorcontrib>Kohns, Maximilian</creatorcontrib><creatorcontrib>Hasse, Hans</creatorcontrib><title>A Force Field for Poly(oxymethylene) Dimethyl Ethers (OMEn)</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>A united atom force field for the homologous series of the poly(oxymethylene) dimethyl ethers (OMEn), H3C–O–(CH2O) n –CH3, is presented. OMEn are oxygenates and promising new synthetic fuels and solvents. The molecular geometry of the OMEn, the internal degrees of freedom, and their electrostatic properties were obtained from quantum mechanical calculations. To model repulsion and dispersion, Lennard-Jones parameters were fitted to the experimental liquid densities and vapor pressures of pure OMEn (n = 1–4). The critical properties of OMEn (n = 1–4) were determined from the simulation data. Additionally, the shear viscosity of pure liquid OMEn is evaluated and compared with literature data. Finally, the solubility of CO2 in OME2, OME3, and OME4 is predicted using a literature model for CO2 and the Lorentz–Berthelot combining rules. The results agree well with experimental data from the literature.</description><subject>Carbon dioxide</subject><subject>Computer simulation</subject><subject>Dimethyl ether</subject><subject>Ethers</subject><subject>Homology</subject><subject>Quantum mechanics</subject><subject>Shear viscosity</subject><subject>Synthetic fuels</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AURgdRbK3uXUnATQumziuTDK5KbVWo1IWuh8zkhqbkUWcSMP_e1LQuBFdzB8733ctB6JrgKcGU3MfGTbemNlOpMSFYnKAhCbj0paDi9Hcm0QBdOLfFmDFO2TkaMEppKBkbooeZt6ysAW-ZQZ54aWW9typvx9VXW0C9aXMoYeI9Zv3HW9QbsM4br18X5eQSnaVx7uDq8I7Qx3LxPn_2V-unl_ls5ccci9rnkZGc8yDiUgsBQXeC0cRIGhEImAhZEKcJkDhMmDRCa01BGBAkNVpiTGM2QuO-d2erzwZcrYrMGcjzuISqcYqyKKChwGHYobd_0G3V2LK7rqMkkSHmgnYU7iljK-cspGpnsyK2rSJY7cWqTqzai1UHsV3k5lDc6AKS38DRZAfc9cBP9Lj0375vOAqBKQ</recordid><startdate>20200414</startdate><enddate>20200414</enddate><creator>Kulkarni, Aditya</creator><creator>García, Edder J</creator><creator>Damone, Angelo</creator><creator>Schappals, Michael</creator><creator>Stephan, Simon</creator><creator>Kohns, Maximilian</creator><creator>Hasse, Hans</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8131-2027</orcidid><orcidid>https://orcid.org/0000-0001-9407-6644</orcidid><orcidid>https://orcid.org/0000-0002-4578-3569</orcidid></search><sort><creationdate>20200414</creationdate><title>A Force Field for Poly(oxymethylene) Dimethyl Ethers (OMEn)</title><author>Kulkarni, Aditya ; García, Edder J ; Damone, Angelo ; Schappals, Michael ; Stephan, Simon ; Kohns, Maximilian ; Hasse, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-48c94445849b66e5423cb1c9281e536735afde1a7d39c6bbb2e6ce61fcb9002a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon dioxide</topic><topic>Computer simulation</topic><topic>Dimethyl ether</topic><topic>Ethers</topic><topic>Homology</topic><topic>Quantum mechanics</topic><topic>Shear viscosity</topic><topic>Synthetic fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulkarni, Aditya</creatorcontrib><creatorcontrib>García, Edder J</creatorcontrib><creatorcontrib>Damone, Angelo</creatorcontrib><creatorcontrib>Schappals, Michael</creatorcontrib><creatorcontrib>Stephan, Simon</creatorcontrib><creatorcontrib>Kohns, Maximilian</creatorcontrib><creatorcontrib>Hasse, Hans</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulkarni, Aditya</au><au>García, Edder J</au><au>Damone, Angelo</au><au>Schappals, Michael</au><au>Stephan, Simon</au><au>Kohns, Maximilian</au><au>Hasse, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Force Field for Poly(oxymethylene) Dimethyl Ethers (OMEn)</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2020-04-14</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>2517</spage><epage>2528</epage><pages>2517-2528</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>A united atom force field for the homologous series of the poly(oxymethylene) dimethyl ethers (OMEn), H3C–O–(CH2O) n –CH3, is presented. OMEn are oxygenates and promising new synthetic fuels and solvents. The molecular geometry of the OMEn, the internal degrees of freedom, and their electrostatic properties were obtained from quantum mechanical calculations. To model repulsion and dispersion, Lennard-Jones parameters were fitted to the experimental liquid densities and vapor pressures of pure OMEn (n = 1–4). The critical properties of OMEn (n = 1–4) were determined from the simulation data. Additionally, the shear viscosity of pure liquid OMEn is evaluated and compared with literature data. Finally, the solubility of CO2 in OME2, OME3, and OME4 is predicted using a literature model for CO2 and the Lorentz–Berthelot combining rules. The results agree well with experimental data from the literature.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32227933</pmid><doi>10.1021/acs.jctc.9b01106</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8131-2027</orcidid><orcidid>https://orcid.org/0000-0001-9407-6644</orcidid><orcidid>https://orcid.org/0000-0002-4578-3569</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2020-04, Vol.16 (4), p.2517-2528 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_2385276077 |
source | ACS Publications |
subjects | Carbon dioxide Computer simulation Dimethyl ether Ethers Homology Quantum mechanics Shear viscosity Synthetic fuels |
title | A Force Field for Poly(oxymethylene) Dimethyl Ethers (OMEn) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Force%20Field%20for%20Poly(oxymethylene)%20Dimethyl%20Ethers%20(OMEn)&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Kulkarni,%20Aditya&rft.date=2020-04-14&rft.volume=16&rft.issue=4&rft.spage=2517&rft.epage=2528&rft.pages=2517-2528&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.9b01106&rft_dat=%3Cproquest_cross%3E2385276077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391970462&rft_id=info:pmid/32227933&rfr_iscdi=true |