A Force Field for Poly(oxymethylene) Dimethyl Ethers (OMEn)

A united atom force field for the homologous series of the poly­(oxymethylene) dimethyl ethers (OMEn), H3C–O–(CH2O) n –CH3, is presented. OMEn are oxygenates and promising new synthetic fuels and solvents. The molecular geometry of the OMEn, the internal degrees of freedom, and their electrostatic p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2020-04, Vol.16 (4), p.2517-2528
Hauptverfasser: Kulkarni, Aditya, García, Edder J, Damone, Angelo, Schappals, Michael, Stephan, Simon, Kohns, Maximilian, Hasse, Hans
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2528
container_issue 4
container_start_page 2517
container_title Journal of chemical theory and computation
container_volume 16
creator Kulkarni, Aditya
García, Edder J
Damone, Angelo
Schappals, Michael
Stephan, Simon
Kohns, Maximilian
Hasse, Hans
description A united atom force field for the homologous series of the poly­(oxymethylene) dimethyl ethers (OMEn), H3C–O–(CH2O) n –CH3, is presented. OMEn are oxygenates and promising new synthetic fuels and solvents. The molecular geometry of the OMEn, the internal degrees of freedom, and their electrostatic properties were obtained from quantum mechanical calculations. To model repulsion and dispersion, Lennard-Jones parameters were fitted to the experimental liquid densities and vapor pressures of pure OMEn (n = 1–4). The critical properties of OMEn (n = 1–4) were determined from the simulation data. Additionally, the shear viscosity of pure liquid OMEn is evaluated and compared with literature data. Finally, the solubility of CO2 in OME2, OME3, and OME4 is predicted using a literature model for CO2 and the Lorentz–Berthelot combining rules. The results agree well with experimental data from the literature.
doi_str_mv 10.1021/acs.jctc.9b01106
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2385276077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385276077</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-48c94445849b66e5423cb1c9281e536735afde1a7d39c6bbb2e6ce61fcb9002a3</originalsourceid><addsrcrecordid>eNp1kEtLw0AURgdRbK3uXUnATQumziuTDK5KbVWo1IWuh8zkhqbkUWcSMP_e1LQuBFdzB8733ctB6JrgKcGU3MfGTbemNlOpMSFYnKAhCbj0paDi9Hcm0QBdOLfFmDFO2TkaMEppKBkbooeZt6ysAW-ZQZ54aWW9typvx9VXW0C9aXMoYeI9Zv3HW9QbsM4br18X5eQSnaVx7uDq8I7Qx3LxPn_2V-unl_ls5ccci9rnkZGc8yDiUgsBQXeC0cRIGhEImAhZEKcJkDhMmDRCa01BGBAkNVpiTGM2QuO-d2erzwZcrYrMGcjzuISqcYqyKKChwGHYobd_0G3V2LK7rqMkkSHmgnYU7iljK-cspGpnsyK2rSJY7cWqTqzai1UHsV3k5lDc6AKS38DRZAfc9cBP9Lj0375vOAqBKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391970462</pqid></control><display><type>article</type><title>A Force Field for Poly(oxymethylene) Dimethyl Ethers (OMEn)</title><source>ACS Publications</source><creator>Kulkarni, Aditya ; García, Edder J ; Damone, Angelo ; Schappals, Michael ; Stephan, Simon ; Kohns, Maximilian ; Hasse, Hans</creator><creatorcontrib>Kulkarni, Aditya ; García, Edder J ; Damone, Angelo ; Schappals, Michael ; Stephan, Simon ; Kohns, Maximilian ; Hasse, Hans</creatorcontrib><description>A united atom force field for the homologous series of the poly­(oxymethylene) dimethyl ethers (OMEn), H3C–O–(CH2O) n –CH3, is presented. OMEn are oxygenates and promising new synthetic fuels and solvents. The molecular geometry of the OMEn, the internal degrees of freedom, and their electrostatic properties were obtained from quantum mechanical calculations. To model repulsion and dispersion, Lennard-Jones parameters were fitted to the experimental liquid densities and vapor pressures of pure OMEn (n = 1–4). The critical properties of OMEn (n = 1–4) were determined from the simulation data. Additionally, the shear viscosity of pure liquid OMEn is evaluated and compared with literature data. Finally, the solubility of CO2 in OME2, OME3, and OME4 is predicted using a literature model for CO2 and the Lorentz–Berthelot combining rules. The results agree well with experimental data from the literature.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.9b01106</identifier><identifier>PMID: 32227933</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Carbon dioxide ; Computer simulation ; Dimethyl ether ; Ethers ; Homology ; Quantum mechanics ; Shear viscosity ; Synthetic fuels</subject><ispartof>Journal of chemical theory and computation, 2020-04, Vol.16 (4), p.2517-2528</ispartof><rights>Copyright American Chemical Society Apr 14, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-48c94445849b66e5423cb1c9281e536735afde1a7d39c6bbb2e6ce61fcb9002a3</citedby><cites>FETCH-LOGICAL-a406t-48c94445849b66e5423cb1c9281e536735afde1a7d39c6bbb2e6ce61fcb9002a3</cites><orcidid>0000-0002-8131-2027 ; 0000-0001-9407-6644 ; 0000-0002-4578-3569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.9b01106$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.9b01106$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32227933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kulkarni, Aditya</creatorcontrib><creatorcontrib>García, Edder J</creatorcontrib><creatorcontrib>Damone, Angelo</creatorcontrib><creatorcontrib>Schappals, Michael</creatorcontrib><creatorcontrib>Stephan, Simon</creatorcontrib><creatorcontrib>Kohns, Maximilian</creatorcontrib><creatorcontrib>Hasse, Hans</creatorcontrib><title>A Force Field for Poly(oxymethylene) Dimethyl Ethers (OMEn)</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>A united atom force field for the homologous series of the poly­(oxymethylene) dimethyl ethers (OMEn), H3C–O–(CH2O) n –CH3, is presented. OMEn are oxygenates and promising new synthetic fuels and solvents. The molecular geometry of the OMEn, the internal degrees of freedom, and their electrostatic properties were obtained from quantum mechanical calculations. To model repulsion and dispersion, Lennard-Jones parameters were fitted to the experimental liquid densities and vapor pressures of pure OMEn (n = 1–4). The critical properties of OMEn (n = 1–4) were determined from the simulation data. Additionally, the shear viscosity of pure liquid OMEn is evaluated and compared with literature data. Finally, the solubility of CO2 in OME2, OME3, and OME4 is predicted using a literature model for CO2 and the Lorentz–Berthelot combining rules. The results agree well with experimental data from the literature.</description><subject>Carbon dioxide</subject><subject>Computer simulation</subject><subject>Dimethyl ether</subject><subject>Ethers</subject><subject>Homology</subject><subject>Quantum mechanics</subject><subject>Shear viscosity</subject><subject>Synthetic fuels</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AURgdRbK3uXUnATQumziuTDK5KbVWo1IWuh8zkhqbkUWcSMP_e1LQuBFdzB8733ctB6JrgKcGU3MfGTbemNlOpMSFYnKAhCbj0paDi9Hcm0QBdOLfFmDFO2TkaMEppKBkbooeZt6ysAW-ZQZ54aWW9typvx9VXW0C9aXMoYeI9Zv3HW9QbsM4br18X5eQSnaVx7uDq8I7Qx3LxPn_2V-unl_ls5ccci9rnkZGc8yDiUgsBQXeC0cRIGhEImAhZEKcJkDhMmDRCa01BGBAkNVpiTGM2QuO-d2erzwZcrYrMGcjzuISqcYqyKKChwGHYobd_0G3V2LK7rqMkkSHmgnYU7iljK-cspGpnsyK2rSJY7cWqTqzai1UHsV3k5lDc6AKS38DRZAfc9cBP9Lj0375vOAqBKQ</recordid><startdate>20200414</startdate><enddate>20200414</enddate><creator>Kulkarni, Aditya</creator><creator>García, Edder J</creator><creator>Damone, Angelo</creator><creator>Schappals, Michael</creator><creator>Stephan, Simon</creator><creator>Kohns, Maximilian</creator><creator>Hasse, Hans</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8131-2027</orcidid><orcidid>https://orcid.org/0000-0001-9407-6644</orcidid><orcidid>https://orcid.org/0000-0002-4578-3569</orcidid></search><sort><creationdate>20200414</creationdate><title>A Force Field for Poly(oxymethylene) Dimethyl Ethers (OMEn)</title><author>Kulkarni, Aditya ; García, Edder J ; Damone, Angelo ; Schappals, Michael ; Stephan, Simon ; Kohns, Maximilian ; Hasse, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-48c94445849b66e5423cb1c9281e536735afde1a7d39c6bbb2e6ce61fcb9002a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon dioxide</topic><topic>Computer simulation</topic><topic>Dimethyl ether</topic><topic>Ethers</topic><topic>Homology</topic><topic>Quantum mechanics</topic><topic>Shear viscosity</topic><topic>Synthetic fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulkarni, Aditya</creatorcontrib><creatorcontrib>García, Edder J</creatorcontrib><creatorcontrib>Damone, Angelo</creatorcontrib><creatorcontrib>Schappals, Michael</creatorcontrib><creatorcontrib>Stephan, Simon</creatorcontrib><creatorcontrib>Kohns, Maximilian</creatorcontrib><creatorcontrib>Hasse, Hans</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulkarni, Aditya</au><au>García, Edder J</au><au>Damone, Angelo</au><au>Schappals, Michael</au><au>Stephan, Simon</au><au>Kohns, Maximilian</au><au>Hasse, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Force Field for Poly(oxymethylene) Dimethyl Ethers (OMEn)</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2020-04-14</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>2517</spage><epage>2528</epage><pages>2517-2528</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>A united atom force field for the homologous series of the poly­(oxymethylene) dimethyl ethers (OMEn), H3C–O–(CH2O) n –CH3, is presented. OMEn are oxygenates and promising new synthetic fuels and solvents. The molecular geometry of the OMEn, the internal degrees of freedom, and their electrostatic properties were obtained from quantum mechanical calculations. To model repulsion and dispersion, Lennard-Jones parameters were fitted to the experimental liquid densities and vapor pressures of pure OMEn (n = 1–4). The critical properties of OMEn (n = 1–4) were determined from the simulation data. Additionally, the shear viscosity of pure liquid OMEn is evaluated and compared with literature data. Finally, the solubility of CO2 in OME2, OME3, and OME4 is predicted using a literature model for CO2 and the Lorentz–Berthelot combining rules. The results agree well with experimental data from the literature.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32227933</pmid><doi>10.1021/acs.jctc.9b01106</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8131-2027</orcidid><orcidid>https://orcid.org/0000-0001-9407-6644</orcidid><orcidid>https://orcid.org/0000-0002-4578-3569</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2020-04, Vol.16 (4), p.2517-2528
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_2385276077
source ACS Publications
subjects Carbon dioxide
Computer simulation
Dimethyl ether
Ethers
Homology
Quantum mechanics
Shear viscosity
Synthetic fuels
title A Force Field for Poly(oxymethylene) Dimethyl Ethers (OMEn)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Force%20Field%20for%20Poly(oxymethylene)%20Dimethyl%20Ethers%20(OMEn)&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Kulkarni,%20Aditya&rft.date=2020-04-14&rft.volume=16&rft.issue=4&rft.spage=2517&rft.epage=2528&rft.pages=2517-2528&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.9b01106&rft_dat=%3Cproquest_cross%3E2385276077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391970462&rft_id=info:pmid/32227933&rfr_iscdi=true